論文の概要: Visual Analysis and Detection of Contrails in Aircraft Engine
Simulations
- arxiv url: http://arxiv.org/abs/2208.02321v1
- Date: Wed, 3 Aug 2022 19:35:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-05 13:03:42.869847
- Title: Visual Analysis and Detection of Contrails in Aircraft Engine
Simulations
- Title(参考訳): 航空機エンジンシミュレーションにおけるコントラルの可視化と検出
- Authors: Nafiul Nipu, Carla Floricel, Negar Naghashzadeh, Roberto Paoli, G.
Elisabeta Marai
- Abstract要約: コントラルとその特性の定義を支援するビジュアルコンピューティングシステムを提案する。
本システムのバックエンドは, 反則形成基準とクラスタリング法を利用して, 反則の形状と進化を検出する。
フロントエンドシステムは、複数のシミュレーションランでコントラルとそのパラメータを分析するのに役立ちます。
- 参考スコア(独自算出の注目度): 2.154170227164331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrails are condensation trails generated from emitted particles by
aircraft engines, which perturb Earth's radiation budget. Simulation modeling
is used to interpret the formation and development of contrails. These
simulations are computationally intensive and rely on high-performance
computing solutions, and the contrail structures are not well defined. We
propose a visual computing system to assist in defining contrails and their
characteristics, as well as in the analysis of parameters for
computer-generated aircraft engine simulations. The back-end of our system
leverages a contrail-formation criterion and clustering methods to detect
contrails' shape and evolution and identify similar simulation runs. The
front-end system helps analyze contrails and their parameters across multiple
simulation runs. The evaluation with domain experts shows this approach
successfully aids in contrail data investigation.
- Abstract(参考訳): コントライル(contrail)は、航空機のエンジンから放出された粒子から発生する凝縮軌道であり、地球の放射収支を揺るがす。
シミュレーションモデリングは、コントラルの形成と発達を解釈するために用いられる。
これらのシミュレーションは計算集約的で高性能な計算ソリューションに依存しており、反則構造は十分に定義されていない。
本稿では,コントラティルとその特性,ならびに計算機生成航空機エンジンシミュレーションのパラメータ解析を支援するビジュアルコンピューティングシステムを提案する。
本システムのバックエンドは, 反則形成基準とクラスタリング法を利用して, 反則の形状と進化を検知し, 類似したシミュレーション実行を同定する。
フロントエンドシステムは、複数のシミュレーションランでコントラルとそのパラメータを分析するのに役立つ。
ドメインの専門家による評価は、このアプローチが反則データ調査に有効であることを示している。
関連論文リスト
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
本稿では,新しいシミュレーションベース推論(SBI)手法であるEmbed and Emulate(E&E)を紹介する。
E&Eはデータと対応する高速エミュレータの低次元潜伏埋め込みを潜伏空間に学習する。
本研究では,現実的なパラメータ推定タスクにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-27T02:37:01Z) - Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
粒子物理学検出器からの信号は衝突の物理を符号化する低レベル物体(エネルギー沈降や軌道など)である。
検出器におけるそれらの完全なシミュレーションは、計算と記憶集約的なタスクである。
我々は,検出器シグネチャのシミュレーションについて,既存の文献の包括的かつ徹底的な分類学的レビューを行う。
論文 参考訳(メタデータ) (2023-12-15T08:27:39Z) - Informal Safety Guarantees for Simulated Optimizers Through
Extrapolation from Partial Simulations [0.0]
自己教師付き学習は、最先端の言語モデリングのバックボーンである。
自己教師付きデータセットにおける予測損失を伴うトレーニングはシミュレータを引き起こすと論じられている。
論文 参考訳(メタデータ) (2023-11-29T09:32:56Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
シミュレーションを利用して様々な物理システムやプロセスを調べる研究者を支援する機械学習ベースのデータジェネレータフレームワークを提案する。
まず、シミュレーション結果を予測するために、限られたシミュレートされたデータセットを使用して教師付き予測モデルをトレーニングする。
その後、強化学習エージェントを訓練し、教師付きモデルを利用して正確なシミュレーションライクなデータを生成する。
論文 参考訳(メタデータ) (2023-05-16T17:31:50Z) - Simulation-Based Parallel Training [55.41644538483948]
このようなボトルネックを緩和するトレーニングフレームワークを設計するために、現在進行中の作業を紹介します。
トレーニングプロセスと並行してデータを生成する。
このバイアスをメモリバッファで軽減する戦略を提案する。
論文 参考訳(メタデータ) (2022-11-08T09:31:25Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - Physical Systems Modeled Without Physical Laws [0.0]
ツリーベースの機械学習手法は、シミュレーションに関わる複雑なバックを「知る」ことなく、望ましい出力をエミュレートすることができる。
具体的には、2つのシミュレーション出力間の特定の時空間データの予測と、数値計算を繰り返す計算コストを伴わずに、物理予測の一般化に焦点をあてる。
論文 参考訳(メタデータ) (2022-07-26T20:51:20Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
シミュレーション知能の9つのモチーフ」は、科学計算、科学シミュレーション、人工知能の融合に必要な重要なアルゴリズムの開発と統合のためのロードマップである。
シミュレーションインテリジェンスのモチーフは、オペレーティングシステムのレイヤ内のコンポーネントとよく似ています。
我々は、モチーフ間の協調的な努力が科学的な発見を加速する大きな機会をもたらすと信じている。
論文 参考訳(メタデータ) (2021-12-06T18:45:31Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。