論文の概要: Physical Systems Modeled Without Physical Laws
- arxiv url: http://arxiv.org/abs/2207.13702v1
- Date: Tue, 26 Jul 2022 20:51:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:40:21.669817
- Title: Physical Systems Modeled Without Physical Laws
- Title(参考訳): 物理法則を含まない物理系
- Authors: David Noever, Samuel Hyams
- Abstract要約: ツリーベースの機械学習手法は、シミュレーションに関わる複雑なバックを「知る」ことなく、望ましい出力をエミュレートすることができる。
具体的には、2つのシミュレーション出力間の特定の時空間データの予測と、数値計算を繰り返す計算コストを伴わずに、物理予測の一般化に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-based simulations typically operate with a combination of complex
differentiable equations and many scientific and geometric inputs. Our work
involves gathering data from those simulations and seeing how well tree-based
machine learning methods can emulate desired outputs without "knowing" the
complex backing involved in the simulations. The selected physics-based
simulations included Navier-Stokes, stress analysis, and electromagnetic field
lines to benchmark performance as numerical and statistical algorithms. We
specifically focus on predicting specific spatial-temporal data between two
simulation outputs and increasing spatial resolution to generalize the physics
predictions to finer test grids without the computational costs of repeating
the numerical calculation.
- Abstract(参考訳): 物理学に基づくシミュレーションは通常、複雑な微分可能な方程式と多くの科学的および幾何学的な入力の組み合わせで動作する。
我々の研究は、これらのシミュレーションからデータを集め、ツリーベースの機械学習手法が、シミュレーションにまつわる複雑なバックを「知る」ことなく、望ましいアウトプットをどの程度うまくエミュレートできるかを確認することである。
選択された物理ベースのシミュレーションは、数値および統計アルゴリズムとしてベンチマーク性能を得るために、ナビエ・ストークス、応力解析、電磁界線を含む。
具体的には、2つのシミュレーション出力間の特定の時空間データの予測と、数値計算を繰り返す計算コストを伴わずに、物理予測の一般化に焦点をあてる。
関連論文リスト
- Embed and Emulate: Contrastive representations for simulation-based inference [11.543221890134399]
本稿では,新しいシミュレーションベース推論(SBI)手法であるEmbed and Emulate(E&E)を紹介する。
E&Eはデータと対応する高速エミュレータの低次元潜伏埋め込みを潜伏空間に学習する。
本研究では,現実的なパラメータ推定タスクにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-27T02:37:01Z) - Exponential improvements in the simulation of lattice gauge theories using near-optimal techniques [0.0]
我々は、アベリア格子ゲージ理論と非アベリア格子ゲージ理論をシミュレートするコストを詳細に分析する。
シミュレーション全体に対して、明示的な回路構成とTゲート数およびキュービット数を提供する。
論文 参考訳(メタデータ) (2024-05-16T19:36:49Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Spatio-Temporal Surrogates for Interaction of a Jet with High
Explosives: Part I -- Analysis with a Small Sample Size [0.0]
高い爆発物と相互作用するジェットの2次元問題を用いて、高品質なサロゲートをどうやって構築できるかを理解する。
それぞれのシミュレーションから得られるベクトル値出力は200万以上の空間的位置で利用可能である。
我々は、これらの非常に大きなデータセットを分析し、分析に使用されるアルゴリズムのパラメータを設定し、時間的・時間的サロゲートの精度を向上させるために簡単な方法を用いる方法を示す。
論文 参考訳(メタデータ) (2023-07-03T23:10:23Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
シミュレーションを利用して様々な物理システムやプロセスを調べる研究者を支援する機械学習ベースのデータジェネレータフレームワークを提案する。
まず、シミュレーション結果を予測するために、限られたシミュレートされたデータセットを使用して教師付き予測モデルをトレーニングする。
その後、強化学習エージェントを訓練し、教師付きモデルを利用して正確なシミュレーションライクなデータを生成する。
論文 参考訳(メタデータ) (2023-05-16T17:31:50Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Simulation-Based Parallel Training [55.41644538483948]
このようなボトルネックを緩和するトレーニングフレームワークを設計するために、現在進行中の作業を紹介します。
トレーニングプロセスと並行してデータを生成する。
このバイアスをメモリバッファで軽減する戦略を提案する。
論文 参考訳(メタデータ) (2022-11-08T09:31:25Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。