論文の概要: Interpretable Polynomial Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2208.05072v1
- Date: Tue, 9 Aug 2022 23:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-11 12:29:44.293753
- Title: Interpretable Polynomial Neural Ordinary Differential Equations
- Title(参考訳): 解釈可能な多項式ニューラル常微分方程式
- Authors: Colby Fronk and Linda Petzold
- Abstract要約: 本稿では,ニューラルODEフレームワーク内のディープニューラルネットワークであるニューラルODEを紹介する。
我々は、SINDyのような追加ツールを使わずに、トレーニング領域外を予測し、直接的シンボル回帰を行うニューラルODEの能力を実証する。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have the ability to serve as universal function
approximators, but they are not interpretable and don't generalize well outside
of their training region. Both of these issues are problematic when trying to
apply standard neural ordinary differential equations (neural ODEs) to
dynamical systems. We introduce the polynomial neural ODE, which is a deep
polynomial neural network inside of the neural ODE framework. We demonstrate
the capability of polynomial neural ODEs to predict outside of the training
region, as well as perform direct symbolic regression without additional tools
such as SINDy.
- Abstract(参考訳): ニューラルネットワークは普遍関数近似器として機能する能力を持つが、解釈不可能であり、訓練領域の外ではうまく一般化しない。
これらの問題は、標準的なニューラル常微分方程式(ニューラルODE)を力学系に適用しようとするときに問題となる。
本稿では,神経odeフレームワーク内の深い多項式ニューラルネットワークである polynomial neural ode を紹介する。
学習領域外での予測や,シンディのような追加のツールを用いずに直接的な記号的回帰を行う多項式ニューラルodeの能力を示す。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Fractional Differential Equations [2.812395851874055]
FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:45:29Z) - Embedding Capabilities of Neural ODEs [0.0]
動的システム理論を用いたニューラルODEの入出力関係について検討する。
我々は,低次元および高次元の異なるニューラルODEアーキテクチャにおける写像の正確な埋め込みについて,いくつかの結果を証明した。
論文 参考訳(メタデータ) (2023-08-02T15:16:34Z) - The Deep Arbitrary Polynomial Chaos Neural Network or how Deep
Artificial Neural Networks could benefit from Data-Driven Homogeneous Chaos
Theory [0.44040106718326594]
Deep Artificial Networks(DANN)に基づくアプローチは、私たちの時代において非常に人気があります。
DANNに基づくディープラーニングアプローチの大部分では、ニューラル信号処理のカーネル構造は同じである。
この課題に対処するために、任意のカオスとして知られるPCE理論をデータ駆動で一般化することを提案する。
論文 参考訳(メタデータ) (2023-06-26T15:09:14Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Partial Differential Equations is All You Need for Generating Neural Architectures -- A Theory for Physical Artificial Intelligence Systems [40.20472268839781]
我々は、統計物理学における反応拡散方程式、量子力学におけるシュル・オーディンガー方程式、同軸光学におけるヘルムホルツ方程式を一般化する。
数値解を求めるためにNPDEを離散化するために有限差分法を用いる。
多層パーセプトロン、畳み込みニューラルネットワーク、リカレントニューラルネットワークなど、ディープニューラルネットワークアーキテクチャの基本構築ブロックが生成される。
論文 参考訳(メタデータ) (2021-03-10T00:05:46Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。