論文の概要: On establishing learning separations between classical and quantum
machine learning with classical data
- arxiv url: http://arxiv.org/abs/2208.06339v1
- Date: Fri, 12 Aug 2022 16:00:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-15 13:46:30.027262
- Title: On establishing learning separations between classical and quantum
machine learning with classical data
- Title(参考訳): 古典的データを用いた古典と量子機械学習の学習分離の確立について
- Authors: Casper Gyurik, Vedran Dunjko
- Abstract要約: 量子学習アルゴリズムが従来の学習アルゴリズムよりもはるかに高速に学習できる学習問題を見つけることの課題について論じる。
証明可能な量子スピードアップを用いて既存の学習問題を研究し、より汎用的で十分な条件の集合を蒸留する。
これらのチェックリストは、学習問題に対する量子スピードアップを証明するためのアプローチの合理化やボトルネックの解明を目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite years of effort, the quantum machine learning community has only been
able to show quantum learning advantages for certain contrived
cryptography-inspired datasets in the case of classical data. In this note, we
discuss the challenges of finding learning problems that quantum learning
algorithms can learn much faster than any classical learning algorithm, and we
study how to identify such learning problems. Specifically, we reflect on the
main concepts in computational learning theory pertaining to this question, and
we discuss how subtle changes in definitions can mean conceptually
significantly different tasks, which can either lead to a separation or no
separation at all. Moreover, we study existing learning problems with a
provable quantum speedup to distill sets of more general and sufficient
conditions (i.e., ``checklists'') for a learning problem to exhibit a
separation between classical and quantum learners. These checklists are
intended to streamline one's approach to proving quantum speedups for learning
problems, or to elucidate bottlenecks. Finally, to illustrate its application,
we analyze examples of potential separations (i.e., when the learning problem
is build from computational separations, or when the data comes from a quantum
experiment) through the lens of our approach.
- Abstract(参考訳): 長年の努力にもかかわらず、量子機械学習コミュニティは、古典的データの場合、ある種の暗号化に触発されたデータセットに対して量子学習の利点を示すことしかできなかった。
本稿では,量子学習アルゴリズムがどの古典的学習アルゴリズムよりも高速に学習できる学習問題を見つけるための課題について論じ,学習問題を特定する方法について検討する。
具体的には、この問題に関連する計算学習理論の主要な概念を考察し、定義の微妙な変化がいかに概念的に著しく異なるタスクを意味するかについて議論する。
さらに,より一般的かつ十分な条件(すなわち「チェックリスト」)の集合を蒸留し,古典的学習者と量子学習者の分離を示す学習問題に対して,既存の学習問題を証明可能な量子スピードアップを用いて検討する。
これらのチェックリストは、学習問題に対する量子スピードアップを証明するためのアプローチの合理化やボトルネックの解明を目的としている。
最後に,その応用例を説明するために,このアプローチのレンズを通して,学習問題(計算分離から構築された場合,あるいは量子実験から得られた場合)の潜在的分離の例を解析する。
関連論文リスト
- Few measurement shots challenge generalization in learning to classify entanglement [0.0]
本稿では,古典的機械学習手法を量子アルゴリズムと組み合わせたハイブリッド量子学習技術に焦点を当てる。
いくつかの設定では、いくつかの測定ショットから生じる不確実性がエラーの主な原因であることを示す。
従来の影をベースとした推定器を導入し,その性能を向上する。
論文 参考訳(メタデータ) (2024-11-10T21:20:21Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
No-Free-Lunch(NFL)定理は、最適化プロセスに関係なく問題とデータ非依存の一般化誤差を定量化する。
我々は、様々な量子学習アルゴリズムを、特定の観測可能条件下で量子力学を学習するために設計された3つの学習プロトコルに分類する。
得られたNFL定理は, CLC-LP, ReQu-LP, Qu-LPにまたがるサンプルの複雑性を2次的に低減することを示した。
この性能差は、非直交量子状態のグローバル位相に関する情報を間接的に活用するために、量子関連学習プロトコルのユニークな能力に起因している。
論文 参考訳(メタデータ) (2024-05-12T09:05:13Z) - Information-theoretic generalization bounds for learning from quantum data [5.0739329301140845]
古典量子データに基づくトレーニングにより量子学習を記述するための数学的定式化を提案する。
我々は,古典的および量子的情報理論量の観点から,量子学習者の期待する一般化誤差を証明した。
我々の研究は、量子学習に関する量子情報理論的な視点を統一するための基礎を築いた。
論文 参考訳(メタデータ) (2023-11-09T17:21:38Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Statistical Complexity of Quantum Learning [32.48879688084909]
本稿では,情報理論を用いた量子学習の複雑さについて概説する。
データ複雑性、コピー複雑性、モデルの複雑さに重点を置いています。
我々は、教師なし学習と教師なし学習の両方に対処することで、量子学習と古典学習の違いを強調する。
論文 参考訳(メタデータ) (2023-09-20T20:04:05Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Exponential separations between classical and quantum learners [2.209921757303168]
我々は,定義の微妙な違いが,学習者が満足して解決すべき要件や課題を著しく異なるものにする可能性について論じる。
本稿では,データ生成関数の同定に古典的困難を主眼として,2つの新たな学習分離を提案する。
論文 参考訳(メタデータ) (2023-06-28T08:55:56Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。