論文の概要: Combinatorial optimization solving by coherent Ising machines based on
spiking neural networks
- arxiv url: http://arxiv.org/abs/2208.07502v1
- Date: Tue, 16 Aug 2022 02:19:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-17 12:25:23.192984
- Title: Combinatorial optimization solving by coherent Ising machines based on
spiking neural networks
- Title(参考訳): スパイクニューラルネットワークに基づくコヒーレントIsingマシンによる組合せ最適化
- Authors: Bo Lu, Yong-Pan Gao, Kai Wen, Chuan Wang
- Abstract要約: スパイキングニューラルネットワークは、インテリジェンスレベルを改善し、量子コンピューティングのアドバテージを提供すると考えられている、ニューロモルフィックコンピューティングの一種である。
本稿では,光スパイクニューラルネットワークを設計することでこの問題に対処し,特に最適化問題において退化速度の高速化に有効であることを示す。
- 参考スコア(独自算出の注目度): 8.971707043961823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural network is a kind of neuromorphic computing which is believed
to improve on the level of intelligence and provide advabtages for quantum
computing. In this work, we address this issue by designing an optical spiking
neural network and prove that it can be used to accelerate the speed of
computation, especially on the combinatorial optimization problems. Here the
spiking neural network is constructed by the antisymmetrically coupled
degenerate optical parametric oscillator pulses and dissipative pulses. A
nonlinear transfer function is chosen to mitigate amplitude inhomogeneities and
destabilize the resulting local minima according to the dynamical behavior of
spiking neurons. It is numerically proved that the spiking neural
network-coherent Ising machines has excellent performance on combinatorial
optimization problems, for which is expected to offer a new applications for
neural computing and optical computing.
- Abstract(参考訳): スパイキングニューラルネットワークは、インテリジェンスレベルを改善し、量子コンピューティングのアドバテージを提供すると考えられている、ニューロモルフィックコンピューティングの一種である。
本稿では,光スパイキングニューラルネットワークを設計することでこの問題に対処し,特に組合せ最適化問題において,計算の高速化に有効であることを示す。
ここで、スパイキングニューラルネットワークは、反対称結合縮退光パラメトリック発振器パルスと散逸パルスによって構成される。
非線形伝達関数は、振幅の不均一性を緩和し、スパイキングニューロンの動的挙動に応じて結果の局所的なミニマを不安定化する。
スパイクニューラルネットワークコヒーレントイジングマシンは組合せ最適化問題において優れた性能を有しており,ニューラルコンピューティングと光コンピューティングに新たな応用が期待されている。
関連論文リスト
- Training Hybrid Neural Networks with Multimode Optical Nonlinearities Using Digital Twins [2.8479179029634984]
大規模非線形変換を行う多モードファイバに超短パルス伝搬を導入する。
ハイブリッドアーキテクチャのトレーニングは、光学系を微分的に近似するニューラルモデルによって達成される。
実験により,最先端の画像分類精度とシミュレーション精度が得られた。
論文 参考訳(メタデータ) (2025-01-14T10:35:18Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
スパイキングニューラルネットワーク(SNN)の計算的非効率性は、主に膜電位の逐次更新によるものである。
スパイキングニューロンの並列計算法である膜電位推定並列スパイキングニューロン(MPE-PSN)を提案する。
提案手法では,特に高次ニューロン密度条件下での計算効率の向上が期待できる。
論文 参考訳(メタデータ) (2024-09-08T05:14:22Z) - Topology Optimization of Random Memristors for Input-Aware Dynamic SNN [44.38472635536787]
入力対応動的旋回型スパイクニューラルネットワーク(PRIME)のプルーニング最適化について紹介する。
信号表現の面では、PRIMEは脳固有のスパイキング機構をエミュレートするために、漏れやすい統合と発火のニューロンを使用する。
計算深度の動的調整にインスパイアされた再構成性のために、PRIMEは入力対応の動的早期停止ポリシーを採用している。
論文 参考訳(メタデータ) (2024-07-26T09:35:02Z) - Expressivity of Neural Networks with Random Weights and Learned Biases [44.02417750529102]
最近の研究は、任意の関数がパラメータの小さな部分集合をチューニングすることによって同様に学習できることを示し、普遍近似の境界を推し進めている。
ランダムな重みを固定したフィードフォワードニューラルネットワークが、バイアスのみを学習することによって複数のタスクを実行することができることを示す理論的および数値的なエビデンスを提供する。
我々の結果は神経科学に関係しており、シナプスの重みを変えることなく動的に行動に関連のある変化が起こる可能性を実証している。
論文 参考訳(メタデータ) (2024-07-01T04:25:49Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neuromorphic Auditory Perception by Neural Spiketrum [27.871072042280712]
本研究では、時間変化のアナログ信号を効率的なスパイクパターンに変換するために、スパイク時相と呼ばれるニューラルスパイク符号化モデルを導入する。
このモデルは、様々な聴覚知覚タスクにおいて、スパイクニューラルネットワークのトレーニングを容易にする、正確に制御可能なスパイクレートを備えたスパースで効率的な符号化スキームを提供する。
論文 参考訳(メタデータ) (2023-09-11T13:06:19Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - Structural plasticity on an accelerated analog neuromorphic hardware
system [0.46180371154032884]
我々は, プレ・グポストシナプスのパートナーを常に切り替えることにより, 構造的可塑性を達成するための戦略を提案する。
我々はこのアルゴリズムをアナログニューロモルフィックシステムBrainScaleS-2に実装した。
ネットワークトポロジを最適化する能力を示し、簡単な教師付き学習シナリオで実装を評価した。
論文 参考訳(メタデータ) (2019-12-27T10:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。