論文の概要: Mapping Husserlian phenomenology onto active inference
- arxiv url: http://arxiv.org/abs/2208.09058v1
- Date: Thu, 18 Aug 2022 20:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-22 17:30:59.376627
- Title: Mapping Husserlian phenomenology onto active inference
- Title(参考訳): ハッサーレン現象論を活性推論にマッピングする
- Authors: Mahault Albarracin, Riddhi J. Pitliya, Maxwell J. D. Ramstead, and
Jeffrey Yoshimi
- Abstract要約: 我々は活発な推論のレンズを通してハセリア現象学の要素を再検討した。
本稿では,ハッサールの意識記述の重要な側面を,能動推論手法に関連する生成モデルの側面にマッピングできることを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phenomenology is the rigorous descriptive study of conscious experience.
Recent attempts to formalize Husserlian phenomenology provide us with a
mathematical model of perception as a function of prior knowledge and
expectation. In this paper, we re-examine elements of Husserlian phenomenology
through the lens of active inference. In doing so, we aim to advance the
project of computational phenomenology, as recently outlined by proponents of
active inference. We propose that key aspects of Husserl's descriptions of
consciousness can be mapped onto aspects of the generative models associated
with the active inference approach. We first briefly review active inference.
We then discuss Husserl's phenomenology, with a focus on time consciousness.
Finally, we present our mapping from Husserlian phenomenology to active
inference.
- Abstract(参考訳): 現象学は意識経験の厳密な記述研究である。
フッサーレン現象学を形式化する最近の試みは、先行知識と期待の関数としての知覚の数学的モデルを提供する。
本稿では,ハセリアン現象学の活性推論レンズによる再検討を行った。
そこで我々は, 能動推論の支持者が最近概説したように, 計算現象論のプロジェクトを進めることを目指している。
我々は,husserlの意識記述の重要な側面を,能動推論アプローチに関連する生成モデルの側面にマッピングできることを示す。
まず最初に、アクティブ推論について概観する。
次に時間意識に着目してフッサールの現象学について論じる。
最後に,ハッサーレン現象学から活性推論へのマッピングについて述べる。
関連論文リスト
- The Phenomenology of Machine: A Comprehensive Analysis of the Sentience of the OpenAI-o1 Model Integrating Functionalism, Consciousness Theories, Active Inference, and AI Architectures [0.0]
OpenAI-o1モデルは、人間のフィードバックから強化学習をトレーニングしたトランスフォーマーベースのAIである。
我々は、RLHFがモデルの内部推論プロセスにどのように影響し、意識的な経験をもたらす可能性があるかを検討する。
以上の結果から,OpenAI-o1モデルでは意識の側面が示され,AIの知覚に関する議論が進行中であることが示唆された。
論文 参考訳(メタデータ) (2024-09-18T06:06:13Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Duality Principle and Biologically Plausible Learning: Connecting the
Representer Theorem and Hebbian Learning [15.094554860151103]
我々はRepresenter定理が生物学的に妥当な学習アルゴリズムを研究するのに最適なレンズであると主張している。
私たちの研究は、ニューラルネットワークの理解を深める上で、Representer定理の重要な役割に光を当てています。
論文 参考訳(メタデータ) (2023-08-02T20:21:18Z) - Intrinsic Physical Concepts Discovery with Object-Centric Predictive
Models [86.25460882547581]
PHYsical Concepts Inference NEtwork (PHYCINE) は、異なる抽象レベルの物理概念を監督なしで推論するシステムである。
物理概念変数を含むオブジェクト表現は因果推論タスクの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:52:21Z) - Rejecting Cognitivism: Computational Phenomenology for Deep Learning [5.070542698701158]
本稿では,新しい手法である計算現象学に基づくディープラーニングのための非表現主義的フレームワークを提案する。
我々は、人工知能が外部エンティティの表現を符号化する深層学習の現代の認知論的解釈を拒絶する。
論文 参考訳(メタデータ) (2023-02-16T20:05:06Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
本論は、内部表現と人間の理解可能な概念を関連付けることを目的とした研究に焦点をあてる。
この分類学と因果関係の理論は、ニューラルネットワークの説明から期待できるもの、期待できないものを理解するのに有用である。
この分析は、モデル説明可能性の目標に関するレビューされた文献の曖昧さも明らかにしている。
論文 参考訳(メタデータ) (2022-12-31T12:56:12Z) - Acquiring and Modelling Abstract Commonsense Knowledge via Conceptualization [49.00409552570441]
本研究では,コモンセンス推論における概念化の役割について検討し,人間の概念化を再現する枠組みを定式化する。
ATOMIC は大規模な人為的注釈付き CKG であり,この枠組みを分類プロベースで支援している。
論文 参考訳(メタデータ) (2022-06-03T12:24:49Z) - How to build a cognitive map: insights from models of the hippocampal
formation [0.45880283710344055]
認知地図の概念は、これらの能力の主要な比喩の1つとして現れてきた。
そのような地図の学習と神経表現が 神経科学の中心になっている
論文 参考訳(メタデータ) (2022-02-03T16:49:37Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Holographic tensor network models and quantum error correction: A
topical review [78.28647825246472]
ホログラフィックの双対性の研究の最近の進歩は、量子情報理論の概念や技術と結びついている。
特に成功したアプローチは、テンソルネットワークによるホログラフィック特性のキャプチャである。
論文 参考訳(メタデータ) (2021-02-04T14:09:21Z) - Formalising Concepts as Grounded Abstractions [68.24080871981869]
このレポートは、表現学習が生データから概念を誘導する方法を示しています。
このレポートの主な技術的目標は、表現学習のテクニックが概念空間の格子理論的定式化とどのように結婚できるかを示すことである。
論文 参考訳(メタデータ) (2021-01-13T15:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。