論文の概要: Deterministic Graph-Walking Program Mining
- arxiv url: http://arxiv.org/abs/2208.10290v1
- Date: Mon, 22 Aug 2022 13:16:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 14:33:00.660681
- Title: Deterministic Graph-Walking Program Mining
- Title(参考訳): 決定論的グラフウォーキングプログラムマイニング
- Authors: Peter Belcak, Roger Wattenhofer
- Abstract要約: 長さが増加する順にプログラムを生成する決定論的グラフウォーキングプログラムを2つのアルゴリズムでマイニングする。
これらのプログラムはグラフ全体の文脈において与えられた2つの頂点集合間の線形長距離関係を特徴づける。
- 参考スコア(独自算出の注目度): 10.482805367361818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Owing to their versatility, graph structures admit representations of
intricate relationships between the separate entities comprising the data. We
formalise the notion of connection between two vertex sets in terms of edge and
vertex features by introducing graph-walking programs. We give two algorithms
for mining of deterministic graph-walking programs that yield programs in the
order of increasing length. These programs characterise linear long-distance
relationships between the given two vertex sets in the context of the whole
graph.
- Abstract(参考訳): その汎用性のため、グラフ構造はデータを構成する別々のエンティティ間の複雑な関係の表現を許容する。
グラフウォーキングプログラムを導入することにより、エッジと頂点の特徴の観点から2つの頂点集合間の接続の概念を定式化する。
長さが増加する順にプログラムを生成する決定論的グラフウォーキングプログラムをマイニングするアルゴリズムを2つ与える。
これらのプログラムはグラフ全体の文脈において与えられた2つの頂点集合間の線形長距離関係を特徴づける。
関連論文リスト
- Robust Attributed Graph Alignment via Joint Structure Learning and
Optimal Transport [26.58964162799207]
本稿では,構造化学習と最適輸送アライメントを併用した教師なしグラフアライメントフレームワークSLOTAlignを提案する。
マルチビュー構造学習を取り入れて、グラフ表現能力を高め、グラフ間で継承された構造と特徴の不整合の影響を低減する。
提案したSLOTAlignは、7つの教師なしグラフアライメント法と5つの特殊なKGアライメント法よりも優れた性能と強いロバスト性を示す。
論文 参考訳(メタデータ) (2023-01-30T08:41:36Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - On a linear fused Gromov-Wasserstein distance for graph structured data [2.360534864805446]
埋め込み間のユークリッド距離として定義される2つのグラフ間の新しい距離である線形FGWを提案する。
提案した距離の利点は2つある: 1) ノードの特徴とグラフの構造を考慮して、カーネルベースのフレームワークにおけるグラフ間の類似性を測定する。
論文 参考訳(メタデータ) (2022-03-09T13:43:18Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
グラフ上での自己教師型学習をコントラッシブ手法を用いて研究する。
複数の部分空間におけるグラフの対比により、グラフエンコーダはより豊富な特徴を捉えることができる。
論文 参考訳(メタデータ) (2021-07-20T22:09:21Z) - Sparse Partial Least Squares for Coarse Noisy Graph Alignment [10.172041234280865]
グラフ信号処理(GSP)は、様々な領域で発生する信号を分析する強力なフレームワークを提供する。
本稿では,観測されたグラフ構造を組み込んで,その基盤となるブロックコミュニティ構造を反映させる,新しい正則化部分最小二乗法を提案する。
論文 参考訳(メタデータ) (2021-04-06T21:52:15Z) - Some Algorithms on Exact, Approximate and Error-Tolerant Graph Matching [3.655021726150369]
我々は、様々な正確かつ不正確なグラフマッチング技術の広範な調査を紹介します。
グラフマッチングアルゴリズムのカテゴリが提示され、重要でないノードを除去することでグラフのサイズを小さくする。
幾何グラフを用いたグラフ類似度測定の新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-30T18:51:06Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。