The Many Inconsistencies of the Purity-Mixture Distinction in Standard Quantum Mechanics
- URL: http://arxiv.org/abs/2208.10574v2
- Date: Thu, 31 Oct 2024 12:45:29 GMT
- Title: The Many Inconsistencies of the Purity-Mixture Distinction in Standard Quantum Mechanics
- Authors: Christian de Ronde, César Massri,
- Abstract summary: The distinction between pure states and mixed states is a kernel ingredient of what is considered to be the standard formulation of quantum mechanics.
In this work we attempt to expose the many inconsistencies introduced by this distinction and the serious consequences this has for many ongoing research programs within quantum physics.
- Score: 0.0
- License:
- Abstract: The distinction between pure states and mixed states is a kernel ingredient of what is considered to be the standard formulation of quantum mechanics and plays today a kernel role in foundational debates about the meaning of quantum probability, the separability of quantum systems, the definition and measure of entanglement, etc. In this work we attempt to expose the many inconsistencies introduced by this distinction and the serious consequences this has for many ongoing research programs within quantum physics which apply these notions uncritically.
Related papers
- Everything is Entangled in Quantum Mechanics: Are the Orthodox Measures Physically Meaningful? [0.0]
We will argue that this new line of research is capable not only to evade the many open problems which appear within the mainstream literature, but is also able to present a consistent and coherent physical understanding of entanglement.
arXiv Detail & Related papers (2024-05-09T13:22:10Z) - The quantum gravity seeds for laws of nature [0.31570310818616687]
We discuss the challenges that the standard (Hu) accounts of laws face within the framework of quantum gravity where space and time may not be fundamental.
We highlight the roles of quantum entanglement, quantum transition amplitudes and quantum causal histories.
These features also stress the fruitful overlap between quantum gravity and quantum information theory.
arXiv Detail & Related papers (2024-04-18T15:12:52Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Experimental investigation of quantum uncertainty relations with
classical shadows [7.675613458661457]
We experimentally investigate quantum uncertainty relations construed with relative entropy of coherence.
We prepare a family of quantum states whose purity can be fully controlled.
Our results indicate the tightness of quantum coherence lower bounds dependents on the reference bases as well as the purity of quantum state.
arXiv Detail & Related papers (2022-02-14T00:26:31Z) - Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit
Programmable Superconducting Processor [17.470012490921192]
Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics.
Here, we propose a new approach called quantum neuronal sensing.
We show that our scheme can efficiently classify two different types of many-body phenomena.
arXiv Detail & Related papers (2022-01-16T03:20:04Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Macroscopic randomness for quantum entanglement generation [0.0]
Quantum entanglement between two or more bipartite entities is a core concept in quantum information areas.
This paper presents a pure classical method of on-demand entangled light-pair generation.
arXiv Detail & Related papers (2021-03-04T07:58:49Z) - Experimental Entanglement Quantification for Unknown Quantum States in a
Semi-Device-Independent Manner [5.3331673690188]
We show that quantum entanglement can be quantified for any unknown quantum states in a semi-device-independent manner.
We experimentally quantify the entanglement of formation and the entanglement of distillation for qutrit-qutrit quantum systems.
arXiv Detail & Related papers (2020-10-19T12:54:25Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.