Singly-excited resonant open quantum system Tavis-Cummings model with
quantum circuit mapping
- URL: http://arxiv.org/abs/2208.12029v2
- Date: Wed, 15 Nov 2023 02:08:40 GMT
- Title: Singly-excited resonant open quantum system Tavis-Cummings model with
quantum circuit mapping
- Authors: Marina Krstic Marinkovic, Marina Radulaski
- Abstract summary: Tavis-Cummings (TC) cavity quantum electrodynamical effects are at the core of atomic, optical and solid state physics.
We devise the Quantum Mapping Algorithm of Resonator Interaction with $N$ Atoms (Q-MARINA)
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tavis-Cummings (TC) cavity quantum electrodynamical effects, describing the
interaction of $N$ atoms with an optical resonator, are at the core of atomic,
optical and solid state physics. The full numerical simulation of TC dynamics
scales exponentially with the number of atoms. By restricting the open quantum
system to a single excitation, typical of experimental realizations in quantum
optics, we analytically solve the TC model with an arbitrary number of atoms
with linear complexity. This solution allows us to devise the Quantum Mapping
Algorithm of Resonator Interaction with $N$ Atoms (Q-MARINA), an intuitive TC
mapping to a quantum circuit with linear space and time scaling, whose $N+1$
qubits represent atoms and a lossy cavity, while the dynamics is encoded
through $2N$ entangling gates. Finally, we benchmark the robustness of the
algorithm on a quantum simulator and superconducting quantum processors against
the quantum master equation solution on a classical computer.
Related papers
- Analysis of the confinement string in (2 + 1)-dimensional Quantum Electrodynamics with a trapped-ion quantum computer [0.0]
We consider a (2+1)-dimensional lattice discretization of Quantum Electrodynamics with the inclusion of fermionic matter.
A symmetry-preserving and resource-efficient variational quantum circuit is employed to prepare the ground state of the theory.
We demonstrate that results from quantum experiments on the Quantinuum H1-1 trapped-ion device and emulator, with full connectivity between qubits, agree with classical noiseless simulations.
arXiv Detail & Related papers (2024-11-08T15:18:21Z) - Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules [0.0]
We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
arXiv Detail & Related papers (2024-09-06T17:42:34Z) - Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Quantum Digital Simulation of Cavity Quantum Electrodynamics: Insights from Superconducting and Trapped Ion Quantum Testbeds [0.016994625126740815]
We present an early exploration of the potential for quantum computers to efficiently investigate open CQED physics.
Our simulations make use of a recent quantum algorithm that maps the dynamics of a singly excited open Tavis-Cummings model containing $N$ atoms.
By applying technology-specific transpilation and error mitigation techniques, we minimize the impact of gate errors, noise, and decoherence in each hardware platform.
arXiv Detail & Related papers (2024-04-05T02:25:49Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.