論文の概要: Even vertex $\zeta$-graceful labeling on Rough Graph
- arxiv url: http://arxiv.org/abs/2208.12047v1
- Date: Tue, 23 Aug 2022 16:53:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 13:24:44.974438
- Title: Even vertex $\zeta$-graceful labeling on Rough Graph
- Title(参考訳): ラフグラフ上の頂点$\zeta$-gracefulラベルでさえも
- Authors: R.Nithya, K.Anitha
- Abstract要約: エッジの重み値としてEven vertex zetaと呼ばれる新しいタイプのラベリングを導入する。
このラベル付けは、粗いパスグラフ、粗いサイクルグラフ、粗いコームグラフ、粗いラググラフ、粗いスターグラフなどの特殊グラフに対して検討する。
- 参考スコア(独自算出の注目度): 1.0152838128195467
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Rough graph is the graphical structure of information system with imprecise
knowledge. Tong He designed the properties of rough graph in 2006[6] and
following that He and Shi introduced the notion of edge rough graph[7]. He et
al developed the concept of weighted rough graph with weighted attributes[6].
In this paper, we introduce a new type of labeling called Even vertex {\zeta}-
graceful labeling as weight value for edges. We investigate this labeling for
some special graphs like rough path graph, rough cycle graph, rough comb graph,
rough ladder graph and rough star graph.
- Abstract(参考訳): ラフグラフは不正確な知識を持つ情報システムのグラフィカルな構造である。
トンは2006[6] 年にラフグラフの性質を設計し、その後、彼とshi はエッジラフグラフ[7]の概念を導入した。
He et al は重み付き属性を持つ粗グラフの概念を開発した[6]。
本稿では,エッジの重み値として Even vertex {\zeta} graceful labeling という新しいラベル方式を提案する。
このラベル付けは、粗いパスグラフ、粗いサイクルグラフ、粗いコームグラフ、粗いラググラフ、粗いスターグラフなどの特殊グラフに対して検討する。
関連論文リスト
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
グラフは、包括的なリレーショナルデータをモデル化するために、過去数十年間、ビッグデータとAIで広く使われてきた。
有意義なグラフ法則の同定は、様々な応用の有効性を著しく向上させることができる。
論文 参考訳(メタデータ) (2024-10-16T00:01:31Z) - Graphons of Line Graphs [6.822247359790484]
スパースグラフのサブセットに光を放つ簡単な方法を示す。
グラフが特定の性質を満たすことを示し、この2次性質はスパースであるが、密度の高い線グラフをもたらす。
特に、星グラフは、密度の高い直線グラフと直線グラフのゼロでないグラフを生じる2次特性を満たす。
論文 参考訳(メタデータ) (2024-09-03T06:50:03Z) - A Graph is Worth $K$ Words: Euclideanizing Graph using Pure Transformer [47.25114679486907]
我々は、非ユークリッドグラフを学習可能なグラフワードに変換するGraph2Seqエンコーダを特徴とするGraphsGPTを紹介する。
GraphGPTデコーダは、元のグラフをGraph Wordsから再構成し、情報等価性を保証する。
論文 参考訳(メタデータ) (2024-02-04T12:29:40Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - Edge Representation Learning with Hypergraphs [36.03482700241067]
本稿では,グラフのエッジをハイパーグラフのノードに変換するDHT(Dual Hypergraph Transformation)に基づく新しいエッジ表現学習フレームワークを提案する。
グラフ表現と生成性能のための多種多様なグラフデータセット上で,ハイパーグラフを用いたエッジ表現学習法を検証する。
我々のエッジ表現学習とプーリング法はグラフ分類における最先端のグラフプーリング法よりも優れています。
論文 参考訳(メタデータ) (2021-06-30T06:59:05Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z) - Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing [22.16111584447466]
グラフベースの機械学習モデルは、非i.dなグラフデータの性質のため、敵対的な摂動に弱い。
堅牢性を保証するスムーズなグラフ分類モデルを構築した。
グラフ畳み込みネットワーク(GCN)に基づくマルチクラスグラフ分類モデルにおいて,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2020-09-12T22:18:54Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。