論文の概要: Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2412.17468v1
- Date: Mon, 23 Dec 2024 10:46:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:33.394815
- Title: Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning
- Title(参考訳): トポロジカルグラフ表現学習のためのライングラフビエトリス-リップス永続図
- Authors: Jaesun Shin, Eunjoo Jeon, Taewon Cho, Namkyeong Cho, Youngjune Gwon,
- Abstract要約: トポロジカルエッジ図(TED)と呼ばれる新しいエッジフィルタを用いた永続化図を導入する。
TEDは、ノードの埋め込み情報を保存し、追加の位相情報を含むことが数学的に証明されている。
本稿では,グラフを行グラフに変換することによってエッジ情報を抽出するLine Graph Vietoris-Rips (LGVR) Persistence Diagramを提案する。
- 参考スコア(独自算出の注目度): 3.6881508872690825
- License:
- Abstract: While message passing graph neural networks result in informative node embeddings, they may suffer from describing the topological properties of graphs. To this end, node filtration has been widely used as an attempt to obtain the topological information of a graph using persistence diagrams. However, these attempts have faced the problem of losing node embedding information, which in turn prevents them from providing a more expressive graph representation. To tackle this issue, we shift our focus to edge filtration and introduce a novel edge filtration-based persistence diagram, named Topological Edge Diagram (TED), which is mathematically proven to preserve node embedding information as well as contain additional topological information. To implement TED, we propose a neural network based algorithm, named Line Graph Vietoris-Rips (LGVR) Persistence Diagram, that extracts edge information by transforming a graph into its line graph. Through LGVR, we propose two model frameworks that can be applied to any message passing GNNs, and prove that they are strictly more powerful than Weisfeiler-Lehman type colorings. Finally we empirically validate superior performance of our models on several graph classification and regression benchmarks.
- Abstract(参考訳): メッセージパッシンググラフニューラルネットワークは情報ノードの埋め込みをもたらすが、グラフのトポロジ的特性を記述することに苦しむ。
この目的のために、ノードフィルタリングは永続図を用いてグラフの位相情報を得る試みとして広く用いられている。
しかし、これらの試みはノード埋め込み情報を失う問題に直面しており、それによってより表現力のあるグラフ表現が提供できなくなる。
この問題に対処するために、我々はエッジフィルタに焦点を移し、新しいエッジフィルタベースの永続化図(Topological Edge Diagram (TED))を導入し、ノード埋め込み情報を保持するとともに、追加のトポロジ情報を含むことを数学的に証明した。
TEDを実装するために,Line Graph Vietoris-Rips (LGVR) Persistence Diagramというニューラルネットワークに基づくアルゴリズムを提案する。
LGVRを通じて、任意のメッセージパッシングGNNに適用可能な2つのモデルフレームワークを提案し、Weisfeiler-Lehman型カラーリングよりも強力であることを証明した。
最後に、いくつかのグラフ分類および回帰ベンチマークにおいて、モデルの優れた性能を実証的に検証する。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
グラフに関する継続的な学習は、グラフデータがストリーミング形式で到着するグラフニューラルネットワーク(GNN)のトレーニングに対処する。
Experience Replayのような従来の継続的学習戦略は、ストリーミンググラフに適応することができる。
本稿では, TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning frameworkを提案する。
論文 参考訳(メタデータ) (2024-01-05T22:22:13Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
グラフニューラルネットワーク(GNN)は、グラフのエッジに沿ってメッセージを渡すことによって、グラフデータの構造を活用することができる。
本稿では,グラフにエッジを体系的に付加することで過疎化を防止する計算効率のよいアルゴリズムを提案する。
提案アルゴリズムは,いくつかのグラフ分類タスクにおいて,既存のグラフリウィリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T07:58:03Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。