Evidence of Kardar-Parisi-Zhang scaling on a digital quantum simulator
- URL: http://arxiv.org/abs/2208.12243v3
- Date: Sat, 15 Oct 2022 12:22:03 GMT
- Title: Evidence of Kardar-Parisi-Zhang scaling on a digital quantum simulator
- Authors: Nathan Keenan, Niall Robertson, Tara Murphy, Sergiy Zhuk and John
Goold
- Abstract summary: We implement a digital simulation of the discrete time quantum dynamics of a spin-$frac12$ XXZ spin chain on a noisy near-term quantum device.
We extract the high temperature transport exponent at the isotropic point.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how hydrodynamic behaviour emerges from the unitary evolution
of the many-particle Schr\"odinger equation is a central goal of
non-equilibrium statistical mechanics. In this work we implement a digital
simulation of the discrete time quantum dynamics of a spin-$\frac{1}{2}$ XXZ
spin chain on a noisy near-term quantum device, and we extract the high
temperature transport exponent at the isotropic point. We simulate the temporal
decay of the relevant spin correlation function at high temperature using a
pseudo-random state generated by a random circuit that is specifically tailored
to the ibmq-montreal $27$ qubit device. The resulting output is a spin
excitation on a highly inhomogeneous background. From the subsequent discrete
time dynamics on the device we are able to extract an anomalous super-diffusive
exponent consistent with the conjectured Kardar-Parisi-Zhang (KPZ) scaling at
the isotropic point. Furthermore we simulate the restoration of spin diffusion
with the application of an integrability breaking potential.
Related papers
- Spin squeezing generated by the anisotropic central spin model [0.28101605533398166]
We investigate the spin squeezing and the quantum phase transition in an anisotropic central spin system.
We find that this kind of central spin systems can be mapped to the anisotropic Lipkin-Meshkov-Glick model in the limit where the ratio of transition between the central spin and the spin bath tends towards infinity.
This work offers a promising scheme for generating spin-squeezed state and paves the way for potential advancements in quantum sensing.
arXiv Detail & Related papers (2023-11-19T12:11:56Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Quantum information spreading in random spin chains [0.0]
We study the spreading of quantum correlations and information in a one-dimensional quantum spin chain with critical disorder as encoded in an infinite randomness fixed point.
Specifically, we focus on the dynamics after a quantum quench of the R'enyi entropies, of the mutual information and of the entanglement negativity in the prototypical XXZ spin chain with random bonds and anisotropy parameters.
arXiv Detail & Related papers (2022-06-06T22:26:19Z) - Localization transition induced by programmable disorder [0.24629531282150877]
Many-body localization occurs on a spin-1/2 transverse-field Ising model.
We observe a transition from an ergodic phase to a non-thermal phase for individual energy eigenstates.
We realize the time-independent disordered Ising Hamiltonian experimentally on a D-Wave 2000Q programmable quantum annealer.
arXiv Detail & Related papers (2021-08-15T15:37:32Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Many-Body Dephasing in a Trapped-Ion Quantum Simulator [0.0]
How a closed interacting quantum many-body system relaxes and dephases as a function of time is a fundamental question in thermodynamic and statistical physics.
We analyse and observe the persistent temporal fluctuations after a quantum quench of a tunable long-range interacting transverse-field Ising Hamiltonian realized with a trapped-ion quantum simulator.
arXiv Detail & Related papers (2020-01-08T12:33:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.