Unified Bayesian Frameworks for Multi-criteria Decision-making Problems
- URL: http://arxiv.org/abs/2208.13390v4
- Date: Wed, 6 Sep 2023 13:44:40 GMT
- Title: Unified Bayesian Frameworks for Multi-criteria Decision-making Problems
- Authors: Majid Mohammadi
- Abstract summary: This paper introduces Bayesian frameworks for tackling various aspects of multi-criteria decision-making (MCDM) problems.
The proposed frameworks offer statistically elegant solutions to key challenges in MCDM, such as group decision-making problems and criteria correlation.
- Score: 2.1833781995073416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Bayesian frameworks for tackling various aspects of
multi-criteria decision-making (MCDM) problems, leveraging a probabilistic
interpretation of MCDM methods and challenges. By harnessing the flexibility of
Bayesian models, the proposed frameworks offer statistically elegant solutions
to key challenges in MCDM, such as group decision-making problems and criteria
correlation. Additionally, these models can accommodate diverse forms of
uncertainty in decision makers' (DMs) preferences, including normal and
triangular distributions, as well as interval preferences. To address
large-scale group MCDM scenarios, a probabilistic mixture model is developed,
enabling the identification of homogeneous subgroups of DMs. Furthermore, a
probabilistic ranking scheme is devised to assess the relative importance of
criteria and alternatives based on DM(s) preferences. Through experimentation
on various numerical examples, the proposed frameworks are validated,
demonstrating their effectiveness and highlighting their distinguishing
features in comparison to alternative methods.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Lexicographic optimization-based approaches to learning a representative model for multi-criteria sorting with non-monotonic criteria [5.374419989598479]
This paper proposes some approaches to learning a representative model for MCS problems with non-monotonic criteria.
We first define some transformation functions to map the marginal values and category thresholds into a UTA-like functional space.
We then construct constraint sets to model non-monotonic criteria in MCS problems and develop optimization models to check and rectify the inconsistency of the decision maker's assignment example preference information.
arXiv Detail & Related papers (2024-09-03T05:29:05Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift.
We propose a framework to evaluate DA methods and present a fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment.
Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications.
arXiv Detail & Related papers (2024-07-16T12:52:29Z) - A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers [4.239829789304117]
We propose to use a multi-stage ensemble approach that will select single counterfactual based on the multiple-criteria analysis.
The proposed approach generates fully actionable counterfactuals with attractive compromise values of the considered quality measures.
arXiv Detail & Related papers (2024-03-20T19:25:11Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
We propose the Unified Multi-Modal Conditional Score-based Generative Model (UMM-CSGM) to take advantage of Score-based Generative Model (SGM)
UMM-CSGM employs a novel multi-in multi-out Conditional Score Network (mm-CSN) to learn a comprehensive set of cross-modal conditional distributions.
Experiments on BraTS19 dataset show that the UMM-CSGM can more reliably synthesize the heterogeneous enhancement and irregular area in tumor-induced lesions.
arXiv Detail & Related papers (2022-07-07T16:57:21Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Multicriteria Group Decision-Making Under Uncertainty Using Interval
Data and Cloud Models [0.0]
We propose a multicriteria group decision making (MCGDM) algorithm under uncertainty where data is collected as intervals.
The proposed MCGDM algorithm aggregates the data, determines the optimal weights for criteria and ranks alternatives with no further input.
The proposed MCGDM algorithm is implemented on a case study of a cybersecurity problem to illustrate its feasibility and effectiveness.
arXiv Detail & Related papers (2020-12-01T06:34:48Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Bayesian preference elicitation for multiobjective combinatorial
optimization [12.96855751244076]
We introduce a new incremental preference elicitation procedure able to deal with noisy responses of a Decision Maker (DM)
We assume that the preferences of the DM are represented by an aggregation function whose parameters are unknown and that the uncertainty about them is represented by a density function on the parameter space.
arXiv Detail & Related papers (2020-07-29T12:28:37Z) - Application of independent component analysis and TOPSIS to deal with
dependent criteria in multicriteria decision problems [8.637110868126546]
We propose a novel approach whose aim is to estimate, from the observed data, a set of independent latent criteria.
A central element of our approach is to formulate the decision problem as a blind source separation problem.
We consider TOPSIS-based approaches to obtain the ranking of alternatives from the latent criteria.
arXiv Detail & Related papers (2020-02-06T13:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.