論文の概要: k-MS: A novel clustering algorithm based on morphological reconstruction
- arxiv url: http://arxiv.org/abs/2208.14390v1
- Date: Tue, 30 Aug 2022 16:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 12:43:07.243288
- Title: k-MS: A novel clustering algorithm based on morphological reconstruction
- Title(参考訳): k-MS: 形態的再構成に基づく新しいクラスタリングアルゴリズム
- Authors: \'E. O. Rodrigues and L. Torok and P. Liatsis and J. Viterbo and A.
Conci
- Abstract要約: k-MSは最悪の場合、CPU並列k-Meansよりも高速である。
また、ミトーシスやTRICLUSTのような密度や形状に敏感な類似のクラスター化法よりも高速である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work proposes a clusterization algorithm called k-Morphological Sets
(k-MS), based on morphological reconstruction and heuristics. k-MS is faster
than the CPU-parallel k-Means in worst case scenarios and produces enhanced
visualizations of the dataset as well as very distinct clusterizations. It is
also faster than similar clusterization methods that are sensitive to density
and shapes such as Mitosis and TRICLUST. In addition, k-MS is deterministic and
has an intrinsic sense of maximal clusters that can be created for a given
input sample and input parameters, differing from k-Means and other
clusterization algorithms. In other words, given a constant k, a structuring
element and a dataset, k-MS produces k or less clusters without using random/
pseudo-random functions. Finally, the proposed algorithm also provides a
straightforward means for removing noise from images or datasets in general.
- Abstract(参考訳): 本研究は,k-モルフォロジー集合(k-ms)と呼ばれるクラスター化アルゴリズムを提案する。
最悪のシナリオでは、k-MSはCPU並列のk-Meansよりも高速で、データセットの可視化が強化され、クラスタ化が非常に異なる。
また、ミトーシスやTRICLUSTのような密度や形状に敏感な類似のクラスター化法よりも高速である。
さらに、k-MSは決定論的であり、k-Meansや他のクラスタ化アルゴリズムとは異なる、与えられた入力サンプルと入力パラメータのために作成できる、固有の最大クラスタの感覚を持つ。
言い換えれば、定数 k 、構造要素、データセットが与えられた場合、k-MS はランダム/擬似ランダム関数を使わずに k 以下のクラスタを生成する。
最後に、提案アルゴリズムは画像やデータセットからノイズを取り除くための簡単な手段も提供する。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
NCCは、ドメイン間数ショットの分類において、少数ショットの分類が可能なメートル法空間を構築するために表現を学ぶことを目的としている。
本稿では,異なるクラスから得られた2つの標本の NCC 学習表現に高い類似性があることを見出した。
ラベル付きデータによって示されるクラスタ構造にマッチするクラス固有の表現の集合を学習するために、最適化されたカーネル依存(MOKD)を最大化する二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T05:59:52Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
ファジィK平均クラスタリングは教師なしデータ分析において重要な手法である。
本稿では,クラスタセントロイドへの依存を完全に排除する,ファジィテクストK-Meansクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:25:03Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
本稿では,BIC基準の観点から,最適なデータセットをグループ化することで,データセットをクラスタリングするアルゴリズムを提案する。
このアルゴリズムの重要な利点は、既に訓練済みのクラスタに基づいて、新しいデータの正しいスーパークラスタを予測する能力である。
論文 参考訳(メタデータ) (2023-09-05T23:49:46Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
マルチカーネルクラスタリング(MKC)は、ベースカーネルの集合から最適な情報融合を実現するためにコミットされる。
本稿では,新しい局所サンプル重み付きマルチカーネルクラスタリングモデルを提案する。
実験により, LSWMKCはより優れた局所多様体表現を有し, 既存のカーネルやグラフベースのクラスタリングアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-05T05:00:38Z) - A Multi-disciplinary Ensemble Algorithm for Clustering Heterogeneous
Datasets [0.76146285961466]
本稿では,社会階級ランキングとメタヒューリスティックアルゴリズムに基づく進化的クラスタリングアルゴリズム(ECAStar)を提案する。
ECAStarは、再共生進化演算子、レヴィ飛行最適化、いくつかの統計技術と統合されている。
従来の5つのアプローチに対してECAStarを評価する実験を行った。
論文 参考訳(メタデータ) (2021-01-01T07:20:50Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - An Efficient Smoothing Proximal Gradient Algorithm for Convex Clustering [2.5182813818441945]
最近導入された凸クラスタリング手法は、凸最適化問題としてクラスタリングを定式化している。
最先端の凸クラスタリングアルゴリズムは大規模な計算とメモリ空間を必要とする。
本稿では,凸クラスタリングのための非常に効率的なスムーズな勾配法 (Sproga) を提案する。
論文 参考訳(メタデータ) (2020-06-22T20:02:59Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。