論文の概要: AutoPET Challenge 2022: Automatic Segmentation of Whole-body Tumor
Lesion Based on Deep Learning and FDG PET/CT
- arxiv url: http://arxiv.org/abs/2209.01212v1
- Date: Wed, 31 Aug 2022 09:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-11 13:03:31.992484
- Title: AutoPET Challenge 2022: Automatic Segmentation of Whole-body Tumor
Lesion Based on Deep Learning and FDG PET/CT
- Title(参考訳): AutoPET Challenge 2022:Deep LearningとFDG PET/CTに基づく全身腫瘍病変の自動分離
- Authors: Shaonan Zhong, Junyang Mo, Zhantao Liu
- Abstract要約: そこで本研究では,腫瘍の領域分割が可能な深層学習モデルを構築するための新たなトレーニング戦略を提案する。
本手法はAutoPET 2022 Challengeのトレーニングセットで検証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic segmentation of tumor lesions is a critical initial processing step
for quantitative PET/CT analysis. However, numerous tumor lesion with different
shapes, sizes, and uptake intensity may be distributed in different anatomical
contexts throughout the body, and there is also significant uptake in healthy
organs. Therefore, building a systemic PET/CT tumor lesion segmentation model
is a challenging task. In this paper, we propose a novel training strategy to
build deep learning models capable of systemic tumor segmentation. Our method
is validated on the training set of the AutoPET 2022 Challenge. We achieved
0.7574 Dice score, 0.0299 false positive volume and 0.2538 false negative
volume on preliminary test set.The code of our work is available on the
following link: https://github.com/ZZZsn/MICCAI2022-autopet.
- Abstract(参考訳): 腫瘍病変の自動分離はPET/CTの定量的解析において重要な初期処理ステップである。
しかし, 形状, サイズ, 吸収強度の異なる多くの腫瘍病変は, 全身の解剖学的文脈で分布し, 健康な臓器にも顕著な取り込みがある。
したがって,全身PET/CT腫瘍病変セグメント化モデルの構築は難しい課題である。
本稿では,系統的腫瘍分割が可能な深層学習モデルを構築するための新しいトレーニング戦略を提案する。
本手法はAutoPET 2022 Challengeのトレーニングセットで検証される。
予備テストセットでは、0.7574diceスコア、0.0299false positiveボリューム、 0.2538false negativeボリュームを達成しました。
関連論文リスト
- AutoPET Challenge III: Testing the Robustness of Generalized Dice Focal Loss trained 3D Residual UNet for FDG and PSMA Lesion Segmentation from Whole-Body PET/CT Images [0.0]
本研究では,3次元残差UNetモデルを用いて,汎用Dice Loss関数を用いてAutoPET Challenge 2024データセット上でモデルをトレーニングする。
Task-1の予備試験段階では、平均アンサンブルは平均Dice similarity Coefficient(DSC)が0.6687、平均偽陰体積(FNV)が10.9522ml、平均偽正体積(FPV)が2.9684mlに達した。
論文 参考訳(メタデータ) (2024-09-16T10:27:30Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Whole-body tumor segmentation of 18F -FDG PET/CT using a cascaded and
ensembled convolutional neural networks [2.735686397209314]
本研究の目的は、18F-FDG PET/CT画像全体において癌疑い領域を自動的に分割するディープニューラルネットワークの性能を報告することである。
PET/CT画像を6mmの解像度で3D UNET CNNの重ね合わせで処理するケースドアプローチを開発した。
論文 参考訳(メタデータ) (2022-10-14T19:25:56Z) - PriorNet: lesion segmentation in PET-CT including prior tumor appearance
information [0.0]
PET-CT画像における腫瘍病変のセグメンテーション性能を改善するための2段階のアプローチを提案する。
第1ステップは、先行腫瘍情報とみなすPET-CTボリュームから先行腫瘍出現マップを生成する。
標準のU-Netからなる第2ステップは、前回の腫瘍出現マップとPET-CT画像を受け取り、病変マスクを生成する。
論文 参考訳(メタデータ) (2022-10-05T12:31:42Z) - Automatic Tumor Segmentation via False Positive Reduction Network for
Whole-Body Multi-Modal PET/CT Images [12.885308856495353]
PET/CT画像評価では,腫瘍の自動切除が重要なステップである。
既存の方法は腫瘍領域を過剰に分離し、正常な高臓器、炎症、その他の感染症などの領域を含む傾向がある。
この制限を克服するために、偽陽性削減ネットワークを導入します。
論文 参考訳(メタデータ) (2022-09-16T04:01:14Z) - AutoPET Challenge 2022: Step-by-Step Lesion Segmentation in Whole-body
FDG-PET/CT [0.0]
この問題に対処する新しいステップバイステップ3Dセグメンテーション法を提案する。
予備試験では,Diceスコア0.92,偽陽性ボリューム0.89,偽陰ボリューム0.53を達成した。
論文 参考訳(メタデータ) (2022-09-04T13:49:26Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。