論文の概要: Cubic-Regularized Newton for Spectral Constrained Matrix Optimization
and its Application to Fairness
- arxiv url: http://arxiv.org/abs/2209.01229v1
- Date: Fri, 2 Sep 2022 18:11:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 15:12:26.496770
- Title: Cubic-Regularized Newton for Spectral Constrained Matrix Optimization
and its Application to Fairness
- Title(参考訳): スペクトル制約行列最適化のための立方体正規化ニュートンとそのフェアネスへの応用
- Authors: Casey Garner, Gilad Lerman, Shuzhong Zhang
- Abstract要約: 行列関数はスムーズなスペクトル制約行列最適化問題を書き換えるために用いられる。
行列ベクトル空間に対する3次正規化ニュートンに対する新しい収束解析法が提供される。
- 参考スコア(独自算出の注目度): 9.649070872824957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matrix functions are utilized to rewrite smooth spectral constrained matrix
optimization problems as smooth unconstrained problems over the set of
symmetric matrices which are then solved via the cubic-regularized Newton
method. A second-order chain rule identity for matrix functions is proven to
compute the higher-order derivatives to implement cubic-regularized Newton, and
a new convergence analysis is provided for cubic-regularized Newton for matrix
vector spaces. We demonstrate the applicability of our approach by conducting
numerical experiments on both synthetic and real datasets. In our experiments,
we formulate a new model for estimating fair and robust covariance matrices in
the spirit of the Tyler's M-estimator (TME) model and demonstrate its
advantage.
- Abstract(参考訳): 行列関数は、滑らかなスペクトル制約行列最適化問題を対称行列の集合上の滑らかな無拘束問題として書き直し、立方体正規化ニュートン法によって解く。
行列関数に対する二階鎖則の恒等式を証明し、高階微分を計算して立方正則ニュートンを実装し、行列ベクトル空間に対する立方正則ニュートンに対して新しい収束解析を行う。
合成データと実データの両方で数値実験を行うことにより,本手法の適用性を示す。
実験では,TylerのM-estimator(TME)モデルの精神において,公正かつロバストな共分散行列を推定するための新しいモデルを定式化し,その利点を実証する。
関連論文リスト
- Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - Semi-supervised Symmetric Non-negative Matrix Factorization with Low-Rank Tensor Representation [27.14442336413482]
半教師付き対称非負行列分解(SNMF)
対制約行列により合成されたテンソルの低ランク表現を求めるSNMFモデルを提案する。
次に、拡張SNMFモデルを提案し、埋め込み行列を上記のテンソル低ランク表現に適合させる。
論文 参考訳(メタデータ) (2024-05-04T14:58:47Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
本稿では,固定次元の共分散行列の固有ベクトルの個々のエントリに対する信頼性境界の計算に挑戦する。
逆共分散行列、いわゆる精度行列の成分を束縛する手法を導出する。
これらの結果の応用として,精度行列の非ゼロ値のテストを可能にする新しい統計テストを示す。
論文 参考訳(メタデータ) (2022-08-25T10:12:53Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
ロバスト低ランク行列補完(RMC)は、コンピュータビジョン、信号処理、機械学習アプリケーションのために広く研究されている。
この問題は、部分的に観察された行列を低ランク行列とスパース行列の重ね合わせに分解することを目的とした。
RMCに取り組むために広く用いられるアプローチは、低ランク行列の核ノルム(低ランク性を促進するために)とスパース行列のl1ノルム(空間性を促進するために)を最小化する凸定式化を考えることである。
本稿では、近年のローワークの動機付けについて述べる。
論文 参考訳(メタデータ) (2020-08-18T04:46:22Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
双線形プールは細粒度視覚認識(FGVC)において大きな成功を収める
近年,行列パワー正規化は双線形特徴量において2次情報を安定化させることができることが示されている。
両線形表現を同時に正規化できる効率的な多目的行列正規化法(MOMN)を提案する。
論文 参考訳(メタデータ) (2020-03-30T08:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。