論文の概要: How to Prompt? Opportunities and Challenges of Zero- and Few-Shot
Learning for Human-AI Interaction in Creative Applications of Generative
Models
- arxiv url: http://arxiv.org/abs/2209.01390v1
- Date: Sat, 3 Sep 2022 10:16:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 14:25:14.994422
- Title: How to Prompt? Opportunities and Challenges of Zero- and Few-Shot
Learning for Human-AI Interaction in Creative Applications of Generative
Models
- Title(参考訳): プロンプトの仕方は?
生成モデルの創造的応用における人-AIインタラクションのためのゼロショット学習の可能性と課題
- Authors: Hai Dang, Lukas Mecke, Florian Lehmann, Sven Goller, Daniel Buschek
- Abstract要約: 我々は,人間-AIインタラクションの新しいパラダイムとしてプロンプトを利用するインタラクティブなクリエイティブアプリケーションのための機会と課題について論じる。
本分析に基づき,プロンプトをサポートするユーザインタフェースの設計目標を4つ提案する。
これらは、クリエイティブな記述のユースケースに焦点を当てた、具体的なUIデザインスケッチで説明します。
- 参考スコア(独自算出の注目度): 29.420160518026496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep generative models have the potential to fundamentally change the way we
create high-fidelity digital content but are often hard to control. Prompting a
generative model is a promising recent development that in principle enables
end-users to creatively leverage zero-shot and few-shot learning to assign new
tasks to an AI ad-hoc, simply by writing them down. However, for the majority
of end-users writing effective prompts is currently largely a trial and error
process. To address this, we discuss the key opportunities and challenges for
interactive creative applications that use prompting as a new paradigm for
Human-AI interaction. Based on our analysis, we propose four design goals for
user interfaces that support prompting. We illustrate these with concrete UI
design sketches, focusing on the use case of creative writing. The research
community in HCI and AI can take these as starting points to develop adequate
user interfaces for models capable of zero- and few-shot learning.
- Abstract(参考訳): 深層生成モデルは、高忠実なデジタルコンテンツの作り方を根本的に変える可能性があるが、制御が難しいことが多い。
生成モデルを実証することは、原則としてエンドユーザがゼロショットと数ショットの学習を創造的に活用して、AIアドホックに新たなタスクを割り当てることを可能にする、有望な最近の開発である。
しかし、効果的なプロンプトを書くエンドユーザの大多数は、現在、試行錯誤プロセスである。
これを解決するために,人間-AIインタラクションの新たなパラダイムとしてプロンプトを利用するインタラクティブなクリエイティブアプリケーションのための重要な機会と課題について論じる。
本分析に基づき,プロンプトをサポートするユーザインタフェースの設計目標を4つ提案する。
これらを具体的uiデザインスケッチで説明し,クリエイティブライティングのユースケースに注目した。
HCIとAIの研究コミュニティは、これらを出発点として、ゼロショットと少数ショットの学習が可能なモデルの適切なユーザインターフェースを開発することができる。
関連論文リスト
- Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。
また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (2024-10-28T23:10:06Z) - A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System [0.0]
本稿では、初心者デザイナーを支援する創造的アイデア生成ツールとして、対話型AIを活用したアクティブなアイデア生成インタフェースを提案する。
これは動的でインタラクティブで文脈に応答するアプローチであり、人工知能(AI)における自然言語処理(NLP)の領域から大きな言語モデル(LLM)を積極的に巻き込む。
このようなAIモデルとアイデアの統合は、連続的な対話ベースのインタラクション、コンテキストに敏感な会話、多彩なアイデア生成の促進に役立つ、アクティブな理想化(Active Ideation)シナリオと呼ばれるものを生み出します。
論文 参考訳(メタデータ) (2024-09-09T16:02:27Z) - Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - The role of interface design on prompt-mediated creativity in Generative
AI [0.0]
2つのジェネレーティブAIプラットフォームから145,000以上のプロンプトを分析します。
その結果,利用者は以前訪れた概念の活用よりも,新たなトピックを探求する傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-11-30T22:33:34Z) - Luminate: Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation [19.62178304006683]
現在のインタラクションパラダイムは不足しており、限られたアイデアの集合に対して、ユーザを迅速なコンバージェンスへと導くものだ、と私たちは主張する。
本研究では,ユーザがシームレスに探索し,評価し,多数の応答を合成できる設計空間の構造化を促進するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:53:14Z) - Opportunities and Challenges in Neural Dialog Tutoring [54.07241332881601]
言語学習のための2つの対話学習データセットを用いて、様々な生成言語モデルを厳密に分析する。
現在のアプローチでは、制約のある学習シナリオでチューリングをモデル化できますが、制約の少ないシナリオではパフォーマンスが悪くなります。
人的品質評価では, モデルと接地木アノテーションの両方が, 同等のチュータリングの点で低い性能を示した。
論文 参考訳(メタデータ) (2023-01-24T11:00:17Z) - Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation
with Large Language Models [116.25562358482962]
最先端のニューラルネットワークモデルは、教師付きトレーニングを必要とせずに、アドホックな言語タスクを解決するために使用することができる。
PromptIDEを使えば、ユーザはプロンプトのバリエーションを試すことができ、プロンプトのパフォーマンスを視覚化し、反復的にプロンプトを最適化できる。
論文 参考訳(メタデータ) (2022-08-16T17:17:53Z) - Few-shot Prompting Towards Controllable Response Generation [49.479958672988566]
まず,モデルのパラメータにアクセスすることなく,モデル生成に対するプロンプトと強化学習(RL)の組み合わせについて検討した。
マルチタスク学習を適用して、モデルが新しいタスクをより良く一般化できるようにします。
実験の結果,提案手法はパラメータにアクセスすることなく,複数のSOTA(State-of-the-art)対話モデルを制御することができることがわかった。
論文 参考訳(メタデータ) (2022-06-08T14:48:06Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Human in the Loop for Machine Creativity [0.0]
我々は、創造的アプリケーションのための既存のHuman-in-the-loop(HITL)アプローチを概念化する。
モデル,インターフェース,機械の創造性に対する長期的影響について検討し,考察する。
テキスト,視覚,音,その他の情報を結合し,人や環境の自動解析を行うマルチモーダルHITLプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-07T15:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。