論文の概要: Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement
- arxiv url: http://arxiv.org/abs/2411.15973v1
- Date: Sun, 24 Nov 2024 20:14:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:59.370492
- Title: Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement
- Title(参考訳): ペアワイズベル状態絡み付き量子拡散モデル
- Authors: Shivalee Shah, Mayank Vatsa,
- Abstract要約: 本稿では、ノイズ中間スケール量子(NISQ)デバイス向けに設計された新しい量子拡散モデルを提案する。
量子絡み合いと重ね合わせを利用して、このアプローチは量子生成学習を前進させる。
- 参考スコア(独自算出の注目度): 35.436358464279785
- License:
- Abstract: This paper introduces a novel quantum diffusion model designed for Noisy Intermediate-Scale Quantum (NISQ) devices. Unlike previous methods, this model efficiently processes higher-dimensional images with complex pixel structures, even on qubit-limited platforms. This is accomplished through a pairwise Bell-state entangling technique, which reduces space complexity. Additionally, parameterized quantum circuits enable the generation of quantum states with minimal parameters, while still delivering high performance. We conduct comprehensive experiments, comparing the proposed model with both classical and quantum techniques using datasets such as MNIST and CIFAR-10. The results show significant improvements in computational efficiency and performance metrics such as FID, SSIM and PSNR. By leveraging quantum entanglement and superposition, this approach advances quantum generative learning. This advancement paves the way for more sophisticated and resource-efficient quantum diffusion algorithms capable of handling complex data on the NISQ devices.
- Abstract(参考訳): 本稿では、ノイズ中間スケール量子(NISQ)デバイス向けに設計された新しい量子拡散モデルを提案する。
従来の手法とは異なり、このモデルはキュービット制限されたプラットフォームでも複雑なピクセル構造を持つ高次元画像を効率的に処理する。
これは、空間の複雑さを低減するベル状態エンタングリング技術によって達成される。
さらに、パラメータ化量子回路は、最低限のパラメータを持つ量子状態の生成を可能にするが、高性能を実現することができる。
我々は、MNISTやCIFAR-10といったデータセットを用いて、提案したモデルと古典的および量子的手法を比較し、包括的な実験を行う。
その結果,FID,SSIM,PSNRなどの計算効率と性能指標が大幅に向上した。
量子絡み合いと重ね合わせを利用して、このアプローチは量子生成学習を前進させる。
この進歩は、NISQデバイス上の複雑なデータを処理できる、より洗練され、リソース効率のよい量子拡散アルゴリズムの道を開く。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Quantum Denoising Diffusion Models [4.763438526927999]
2つの量子拡散モデルを導入し、それらの能力と古典的能力とをベンチマークする。
我々のモデルは、FID、SSIM、PSNRのパフォーマンス指標の点で、類似したパラメータ数を持つ古典モデルを上回る。
論文 参考訳(メタデータ) (2024-01-13T11:38:08Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
量子運動方程式 (quantum equation of motion, QEOM) はフェルミオン多体系の励起特性を計算するためのハイブリッド量子古典アルゴリズムである。
我々は、qEOMが要求される量子測定数の独立性により量子的利益を示すことを明らかに示している。
論文 参考訳(メタデータ) (2023-09-18T22:10:26Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Machine Learning Aided Dimensionality Reduction towards a Resource
Efficient Projective Quantum Eigensolver [0.0]
近年,分子系の基底状態エネルギーを計算するためのエレガントな手法として,PQE (Projective Quantum Eigensolver) が提案されている。
我々は、この2つのパラメータの集合的相互作用を機械学習技術を用いて利用し、相乗的相互関係を導出した。
論文 参考訳(メタデータ) (2023-03-20T16:49:56Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
量子デバイスで物理的に実現可能な低深さ量子回路を開発することが不可欠である。
我々は,最適なアンサッツを動的に調整できるアンサッツ構成プロトコルを開発した。
アンザッツの構成は、エネルギーソートと演算子の可換性事前スクリーニングによって並列量子アーキテクチャで実行される可能性がある。
論文 参考訳(メタデータ) (2023-02-07T11:22:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。