論文の概要: Histogram Layers for Synthetic Aperture Sonar Imagery
- arxiv url: http://arxiv.org/abs/2209.03878v1
- Date: Thu, 8 Sep 2022 15:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-09 12:32:55.991532
- Title: Histogram Layers for Synthetic Aperture Sonar Imagery
- Title(参考訳): 合成開口ソナー画像のためのヒストグラム層
- Authors: Joshua Peeples, Alina Zare, Jeffrey Dale, James Keller
- Abstract要約: SAS画像へのヒストグラムの新たな応用について述べる。
ディープラーニングモデルにヒストグラム層を追加することで、性能が向上した。
- 参考スコア(独自算出の注目度): 2.452410403088629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic aperture sonar (SAS) imagery is crucial for several applications,
including target recognition and environmental segmentation. Deep learning
models have led to much success in SAS analysis; however, the features
extracted by these approaches may not be suitable for capturing certain
textural information. To address this problem, we present a novel application
of histogram layers on SAS imagery. The addition of histogram layer(s) within
the deep learning models improved performance by incorporating statistical
texture information on both synthetic and real-world datasets.
- Abstract(参考訳): 合成開口ソナー(sas)画像はターゲット認識や環境セグメンテーションなど,いくつかの応用において重要である。
深層学習モデルは、SAS分析において大きな成功を収めてきたが、これらの手法によって抽出された特徴は、特定のテクスチャ情報を取得するには適していないかもしれない。
そこで本研究では,SAS画像へのヒストグラム層の適用について述べる。
ディープラーニングモデルにヒストグラム層を追加することで、合成データセットと実世界のデータセットの統計テクスチャ情報を組み込むことにより、パフォーマンスが向上した。
関連論文リスト
- GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring [50.72230109855628]
本稿では,新しい手法を用いて合成されたリアルなぼやけた画像のデータセットであるGS-Blurを提案する。
まず,3Dガウス・スプレイティング(3DGS)を用いて多視点画像から3Dシーンを再構成し,ランダムに生成された運動軌跡に沿ってカメラビューを移動させてぼやけた画像を描画する。
GS-Blurの再構築に様々なカメラトラジェクトリを採用することで、我々のデータセットは現実的で多様な種類のぼかしを含み、現実世界のぼかしをうまく一般化する大規模なデータセットを提供する。
論文 参考訳(メタデータ) (2024-10-31T06:17:16Z) - Visual Car Brand Classification by Implementing a Synthetic Image Dataset Creation Pipeline [3.524869467682149]
安定拡散を用いた合成画像データセットの自動生成パイプラインを提案する。
YOLOv8を用いて自動境界ボックス検出と合成画像の品質評価を行う。
論文 参考訳(メタデータ) (2024-06-03T07:44:08Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Diffusion-based generation of Histopathological Whole Slide Images at a
Gigapixel scale [10.481781668319886]
Synthetic Whole Slide Images (WSI)は、多くの計算アプリケーションの性能を高めるためにトレーニングデータセットを増強することができる。
既存のディープラーニングベースの手法は、WSIを通常高い解像度で生成しない。
本稿では,高分解能 WSI の画像生成に取り組むために,新しい粗大なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T14:33:39Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis [104.53930611219654]
約2000の複雑なシーンからレンダリングされた300k画像からなる,新しいビュー合成のための大規模合成データセットを提案する。
データセットは、新しいビュー合成のための既存の合成データセットよりも桁違いに大きい。
高品質な3Dメッシュの4つのソースを使用して、私たちのデータセットのシーンは、カメラビュー、照明、形状、材料、テクスチャの難しいバリエーションを示します。
論文 参考訳(メタデータ) (2022-05-14T13:15:32Z) - Image-to-Height Domain Translation for Synthetic Aperture Sonar [3.2662392450935416]
本研究では,等方的および異方的テクスチャに関する集合幾何学に焦点をあてる。
集合幾何学の低放牧角度は、異方性テクスチャに対するソナーパスの配向と相まって、画像アライメントや他の多視点シーン理解フレームワークにとって重要な課題である。
論文 参考訳(メタデータ) (2021-12-12T19:53:14Z) - Iterative, Deep, and Unsupervised Synthetic Aperture Sonar Image
Segmentation [29.435946984214937]
SAS画像セグメンテーションのための深い特徴を学習するための新しい反復的教師なしアルゴリズムを提案する。
その結果,提案手法の性能は,SAS画像分割における現在の最先端手法よりもかなり優れていることがわかった。
論文 参考訳(メタデータ) (2021-07-30T11:37:33Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Synthetic Glacier SAR Image Generation from Arbitrary Masks Using
Pix2Pix Algorithm [12.087729834358928]
教師あり機械学習は、適切なテスト結果を得るために大量のラベル付きデータを必要とする。
本研究では,Pix2pixアルゴリズムを用いて合成SAR画像を生成することにより,限られたトレーニングデータの問題を軽減することを提案する。
異なるモデルを示し,比較研究を行い,sar画像の説得力のある氷河を定性的・定量的に合成する手法を実証した。
論文 参考訳(メタデータ) (2021-01-08T23:30:00Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。