Deep Learning Based Residuals in Non-linear Factor Models: Precision
Matrix Estimation of Returns with Low Signal-to-Noise Ratio
- URL: http://arxiv.org/abs/2209.04512v3
- Date: Tue, 29 Aug 2023 13:33:49 GMT
- Title: Deep Learning Based Residuals in Non-linear Factor Models: Precision
Matrix Estimation of Returns with Low Signal-to-Noise Ratio
- Authors: Mehmet Caner, Maurizio Daniele
- Abstract summary: This paper introduces a consistent estimator and rate of convergence for the precision matrix of asset returns in large portfolios.
Our estimator remains valid even in low signal-to-noise ratio environments typical for financial markets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a consistent estimator and rate of convergence for the
precision matrix of asset returns in large portfolios using a non-linear factor
model within the deep learning framework. Our estimator remains valid even in
low signal-to-noise ratio environments typical for financial markets and is
compatible with weak factors. Our theoretical analysis establishes uniform
bounds on expected estimation risk based on deep neural networks for an
expanding number of assets. Additionally, we provide a new consistent
data-dependent estimator of error covariance in deep neural networks. Our
models demonstrate superior accuracy in extensive simulations and the empirics.
Related papers
- Robust deep learning from weakly dependent data [0.0]
This paper considers robust deep learning from weakly dependent observations, with unbounded loss function and unbounded input/output.
We derive a relationship between these bounds and $r$, and when the data have moments of any order (that is $r=infty$), the convergence rate is close to some well-known results.
arXiv Detail & Related papers (2024-05-08T14:25:40Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
We reinvigorate maximum likelihood estimation (MLE) for macroeconomic density forecasting through a novel neural network architecture with dedicated mean and variance hemispheres.
Our Hemisphere Neural Network (HNN) provides proactive volatility forecasts based on leading indicators when it can, and reactive volatility based on the magnitude of previous prediction errors when it must.
arXiv Detail & Related papers (2023-11-27T21:37:50Z) - Robust low-rank training via approximate orthonormal constraints [2.519906683279153]
We introduce a robust low-rank training algorithm that maintains the network's weights on the low-rank matrix manifold.
The resulting model reduces both training and inference costs while ensuring well-conditioning and thus better adversarial robustness, without compromising model accuracy.
arXiv Detail & Related papers (2023-06-02T12:22:35Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
Data [48.4779912667317]
Self-training algorithms have been very successful for learning with unlabeled data using neural networks.
This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning.
arXiv Detail & Related papers (2020-10-07T19:43:55Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Recurrent neural networks and Koopman-based frameworks for temporal
predictions in a low-order model of turbulence [1.95992742032823]
We show that it is possible to obtain excellent reproductions of the long-term statistics of a chaotic system with properly trained long-short-term memory networks.
A Koopman-based framework, called Koopman with nonlinear forcing (KNF), leads to the same level of accuracy in the statistics at a significantly lower computational expense.
arXiv Detail & Related papers (2020-05-01T11:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.