論文の概要: Rethink Decision Tree Traversal
- arxiv url: http://arxiv.org/abs/2209.04825v1
- Date: Sun, 11 Sep 2022 09:53:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 14:19:06.322862
- Title: Rethink Decision Tree Traversal
- Title(参考訳): 決定木トラバーサルの再考
- Authors: Jinxiong Zhang
- Abstract要約: textitQuickScorer が citelucchese2015quickscorer で動機づけた行列計算言語における二分決定木トラバーサルの評価法を示す。
我々の主な貢献は、決定木の階層構造を表す新しい行列表現である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We will show how to evaluate binary decision tree traversal in the language
of matrix computation motivated by \textit{QuickScorer} in
\cite{lucchese2015quickscorer}. Our main contribution is a novel matrix
representation of the hierarchical structure of the decision tree. And we
propose some equivalent algorithms of binary decision tree traversal based on
rigorous theoretical analysis. The core idea is to find the relation between
the input and exit leaf node. Here we not only understand decisions without the
recursive traverse but also dive into the partitioning nature of tree-based
methods.
- Abstract(参考訳): 行列計算の言語における二進決定木(英語版)のトラバーサルの評価方法については、 \cite{lucchese2015quickscorer} における \textit{quickscorer} によって動機づけられる。
我々の主な貢献は、決定木の階層構造を表す新しい行列表現である。
また,厳密な理論的解析に基づく二分決定木トラバースの等価アルゴリズムを提案する。
中心となるアイデアは、入力と終了リーフノードの関係を見つけることである。
ここでは、再帰的なトラバースなしで決定を理解するだけでなく、ツリーベースのメソッドの分割性にも目を向ける。
関連論文リスト
- Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
メタ学習によってトレーニングされたトランスフォーマーベースのモデルであるMetaTreeを導入し、強力な決定木を直接生成する。
我々は、多くのデータセットに欲求決定木とグローバルに最適化された決定木の両方を適合させ、MetaTreeを訓練して、強力な一般化性能を実現する木のみを生成する。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Boundは、Mixed Linear Programsという形で最適化タスクを解決するための便利なアプローチである。
解法の効率は、分割する変数を選択するのに使用される分岐に依存する。
分岐を効率的に学習できる強化学習法を提案する。
論文 参考訳(メタデータ) (2023-06-09T14:01:26Z) - Phylo2Vec: a vector representation for binary trees [0.49478969093606673]
系統樹を模したPhylo2Vecについて紹介する。
系統樹を操作および表現するための統一的なアプローチとして機能する。
概念実証として、Phylo2Vecを用いて5つの実世界のデータセットの最大推定を行う。
論文 参考訳(メタデータ) (2023-04-25T09:54:35Z) - Structure-Unified M-Tree Coding Solver for MathWord Problem [57.825176412485504]
従来,数式表現の2次木構造を考慮に入れたモデルでは,性能が向上した。
本稿では、出力構造を統一するために、任意のM枝(M-tree)を持つ木を適用した構造統一M-Tree符号化(S-UMCr)を提案する。
広く使われているMAWPSとMath23Kデータセットの実験結果は、SUMC-rが複数の最先端モデルを上回るだけでなく、低リソース条件下でもはるかに優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-10-22T12:20:36Z) - Robustifying Algorithms of Learning Latent Trees with Vector Variables [92.18777020401484]
Recursive Grouping (RG) と Chow-Liu Recursive Grouping (CLRG) のサンプル複雑性について述べる。
RG,CLRG,Neighbor Joining (NJ) およびSpectral NJ (SNJ) をトラッピングした内積を用いて強化する。
我々は、潜在木の構造学習において、最初の既知のインスタンス依存の不合理性の結果を導出する。
論文 参考訳(メタデータ) (2021-06-02T01:37:52Z) - Decision Machines: Congruent Decision Trees [0.0]
本稿では,ブール試験を二進ベクトル空間に埋め込み,木構造を行列として表現する決定機械を提案する。
我々は,決定木と注意機構の一致を探求し,決定木を最適化し,予測力を増強するための新たな道を開く。
論文 参考訳(メタデータ) (2021-01-27T12:23:24Z) - Yet Another Representation of Binary Decision Trees: A Mathematical Demonstration [0.0]
決定木は単純な非巡回計算グラフのように見え、葉ノードだけが出力値を指定する。
数値的な観点から、計算グラフの言語で決定木を表現する。
論文 参考訳(メタデータ) (2021-01-18T13:50:14Z) - Recursive Top-Down Production for Sentence Generation with Latent Trees [77.56794870399288]
自然および合成言語に対する文脈自由文法の生成特性をモデル化する。
潜伏二分木構造にN$の葉を持つ動的プログラミングアルゴリズムを提案する。
また,Multi30kデータセットを用いたドイツ語と英語の翻訳実験を行った。
論文 参考訳(メタデータ) (2020-10-09T17:47:16Z) - Learning Binary Decision Trees by Argmin Differentiation [34.9154848754842]
ダウンストリームタスクのためにデータを分割するバイナリ決定木を学びます。
離散パラメータの混合整数プログラムを緩和する。
我々は、前方と後方のパスを効率的に計算するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2020-10-09T15:11:28Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。