Shared control of a 16 semiconductor quantum dot crossbar array
- URL: http://arxiv.org/abs/2209.06609v1
- Date: Wed, 14 Sep 2022 12:59:50 GMT
- Title: Shared control of a 16 semiconductor quantum dot crossbar array
- Authors: Francesco Borsoi, Nico W. Hendrickx, Valentin John, Sayr Motz, Floor
van Riggelen, Amir Sammak, Sander L. de Snoo, Giordano Scappucci, Menno
Veldhorst
- Abstract summary: We introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium.
We establish a method for the selective control of the quantum dots interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficient control of a large number of qubits is one of most challenging
aspects for practical quantum computing. Current approaches in solid-state
quantum technology are based on brute-force methods, where each and every qubit
requires at least one unique control line, an approach that will become
unsustainable when scaling to the required millions of qubits. Here, inspired
by random access architectures in classical electronics, we introduce the
shared control of semiconductor quantum dots to efficiently operate a
two-dimensional crossbar array in planar germanium. We tune the entire array,
comprising 16 quantum dots, to the few-hole regime and, to isolate an unpaired
spin per dot, we confine an odd number of holes in each site. Moving forward,
we establish a method for the selective control of the quantum dots interdot
coupling and achieve a tunnel coupling tunability over more than 10 GHz. The
operation of a quantum electronic device with fewer control terminals than
tunable experimental parameters represents a compelling step forward in the
construction of scalable quantum technology.
Related papers
- A trilinear quantum dot architecture for semiconductor spin qubits [0.0]
We present a trilinear quantum dot array that is simple in physical layout while allowing individual wiring to each quantum dot.
By means of electron shuttling, the trilinear architecture provides qubit connectivity that is equivalent to or even surpasses that of 2D square lattice.
We also present a scalable control scheme, where the qubit chip is 3D-integrated with a low-power switch-based cryoCMOS circuit for parallel qubit operation.
arXiv Detail & Related papers (2025-01-29T18:06:38Z) - Diverse methods and practical aspects in controlling single semiconductor qubits: a review [1.1549572298362787]
Quantum control allows a wide range of quantum operations employed in molecular physics, nuclear magnetic resonance and quantum information processing.
Semiconducting qubits, where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots, constitute a highly competitive candidate for scalable solid-state quantum technologies.
arXiv Detail & Related papers (2024-12-04T12:58:49Z) - A fiber array architecture for atom quantum computing [29.574286367992432]
We propose a fiber array architecture for atom quantum computing capable of fully independent control of individual atoms.
We experimentally demonstrate the trapping and independent control of ten single atoms in two-dimensional optical tweezers.
Our work paves the way for time-efficient execution of quantum algorithms on neutral atom quantum computers.
arXiv Detail & Related papers (2024-11-13T10:39:41Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - A shuttling-based two-qubit logic gate for linking distant silicon
quantum processors [0.0]
Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation.
Here we demonstrate a two-qubit gate between spin qubits via coherent spin shuttling, a key technology for linking distant silicon quantum processors.
arXiv Detail & Related papers (2022-02-03T01:04:48Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Nonadiabatic geometric quantum computation with optimal control on
superconducting circuits [7.703593898562321]
We propose a nonadiabatic geometric quantum computation scheme on superconducting circuits.
Our scheme provides a promising step towards fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-04-21T08:34:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.