論文の概要: Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering
- arxiv url: http://arxiv.org/abs/2209.11234v1
- Date: Thu, 15 Sep 2022 04:21:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 23:31:06.146827
- Title: Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering
- Title(参考訳): 材料工学における人工知能: 材料工学におけるAIの応用に関するレビュー
- Authors: Lipichanda Goswami, Manoj Deka and Mohendra Roy
- Abstract要約: 材料工学の分野では人工知能(AI)が広く使われている。
この記事では、材料工学におけるAIの応用の最新の展開についてレビューする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been extensive use of artificial Intelligence (AI) in the
field of material engineering. This can be attributed to the development of
high performance computing and thereby feasibility to test deep learning models
with large parameters. In this article we tried to review some of the latest
developments in the applications of AI in material engineering.
- Abstract(参考訳): 近年,材料工学の分野で人工知能(AI)が広く利用されている。
これは、高性能コンピューティングの開発に起因し、大きなパラメータを持つディープラーニングモデルをテストすることが可能である。
この記事では、物質工学におけるAIの応用における最新の発展のいくつかをレビューしようと試みた。
関連論文リスト
- Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
この文脈でeXplainable AI(XAI)ツールとテクニックをレビューする。
私たちは、AI決定を透明にする彼らの役割、特に人間が関与する重要なシナリオに重点を置いています。
モデル性能と説明可能性のバランスをとることを目的とした,現在の限界と今後の研究について論じる。
論文 参考訳(メタデータ) (2024-04-17T17:49:38Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - MatChat: A Large Language Model and Application Service Platform for
Materials Science [18.55541324347915]
我々は、LLaMA2-7Bモデルのパワーを活用し、13,878個の構造化材料知識データを組み込んだ学習プロセスを通じて、LLaMA2-7Bモデルを強化する。
MatChatという名前のこの専門的なAIモデルは、無機物質合成経路の予測に焦点を当てている。
MatChatは現在オンラインでアクセス可能であり、モデルとアプリケーションフレームワークの両方をオープンソースとして利用できる。
論文 参考訳(メタデータ) (2023-10-11T05:11:46Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
我々は、AI技術のこのような新しい機能を使用して、AI測定能力を増強することを提案する。
我々は倫理的問題や関心事に関連する出版物を分類するモデルを訓練する。
私たちは、AIメトリクス、特に信頼できる公正なAIベースのツールや技術開発への彼らの貢献の意味を強調します。
論文 参考訳(メタデータ) (2021-07-26T00:26:12Z) - A Classification of Artificial Intelligence Systems for Mathematics
Education [3.718476964451589]
本章では,数学教育(ME)のデジタルツールとして使用されているAIシステムの概要を紹介する。
それはAIと機械学習(ML)の研究者を対象としており、教育アプリケーションで使われている特定の技術に光を当てています。
論文 参考訳(メタデータ) (2021-07-13T12:09:10Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。