論文の概要: Linear multidimensional regression with interactive fixed-effects
- arxiv url: http://arxiv.org/abs/2209.11691v4
- Date: Mon, 26 Aug 2024 02:33:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-08-28 01:37:08.532970
- Title: Linear multidimensional regression with interactive fixed-effects
- Title(参考訳): インタラクティブな固定効果を用いた線形多次元回帰
- Authors: Hugo Freeman,
- Abstract要約: 本稿では,3次元以上の多次元パネルデータに対する線形かつ付加的に分離可能なモデルについて検討する。
2つのアプローチは、係数を推定する際、これらの未観測のインタラクティブな固定効果を考慮に入れていると考えられる。
ビールの需要弾力性を推定する手法が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two dimensional panel framework and restrictions are formed under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at slow rates of convergence. The second approach develops a kernel weighted fixed-effects method that is more robust to the multidimensional nature of the problem and can achieve the parametric rate of consistency under certain conditions. Theoretical results and simulations show some benefits to standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the kernel weighted method performs well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer.
- Abstract(参考訳): 本稿では,3次元以上の多次元パネルデータに対する線形かつ付加的に分離可能なモデルについて検討する。
2つのアプローチは、観測された共変量に対する係数を推定する際に、これらの観測されていないインタラクティブな固定効果を考慮に入れていると考えられる。
第一に、モデルは標準的な2次元パネルの枠組みに埋め込まれており、Bai (2009) における因子構造法がモデルパラメータの一貫した推定に繋がる制約を形成するが、収束速度は遅い。
第2のアプローチでは、カーネル重み付き固定効果法を開発し、この問題の多次元的性質に対してより堅牢であり、特定の条件下での一貫性のパラメトリック速度を達成することができる。
理論的な結果とシミュレーションは、インタラクティブな固定効果項の構造が知られている場合の標準的な2次元パネル法にいくつかの利点を示す一方で、カーネル重み付け法がこの構造を知らずにどのように機能するかを強調している。
ビールの需要弾力性を推定する手法が提案されている。
関連論文リスト
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
ディープモデルマージ(Deep Modelmerging)は、複数の微調整モデルを組み合わせて、さまざまなタスクやドメインにまたがる能力を活用する、新たな研究方向を示すものだ。
現在のモデルマージ技術は、全ての利用可能なモデルを同時にマージすることに集中しており、重量行列に基づく手法が主要なアプローチである。
本稿では,モデルを逐次処理するトレーニングフリーなプロジェクションベース連続マージ手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T13:17:24Z) - Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
本稿では、再生カーネル空間(RKHS)に相互作用関数が存在すると仮定した非線形ホークス過程の非パラメトリック推定について述べる。
神経科学の応用によって動機づけられたこのモデルは、エキサイティングな効果と阻害的な効果を表現するために、複雑な相互作用機能を実現する。
本手法は, 関連する非パラメトリック推定手法よりも優れた性能を示し, 神経応用に適していることが示唆された。
論文 参考訳(メタデータ) (2024-11-01T14:26:50Z) - Complexity Matters: Effective Dimensionality as a Measure for Adversarial Robustness [0.7366405857677227]
本研究では,モデルの有効次元性とロバスト性との関係について検討する。
YOLO や ResNet などの実環境でよく使用される商用規模のモデルで実験を行う。
実効次元と対向ロバスト性の間のほぼ直線的逆関係を明らかにし、低次元ロバスト性モデルがより良いロバスト性を示すことを示した。
論文 参考訳(メタデータ) (2024-10-24T09:01:34Z) - Bridging the Modality Gap: Dimension Information Alignment and Sparse Spatial Constraint for Image-Text Matching [10.709744162565274]
本稿では2つの側面からモダリティギャップを橋渡しするDIASと呼ばれる新しい手法を提案する。
この方法はFlickr30kとMSCOCOベンチマークで4.3%-10.2%のrSum改善を実現している。
論文 参考訳(メタデータ) (2024-10-22T09:37:29Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
我々は、一般の2階粒子モデルにおけるデータ駆動的な発見に焦点を当てる。
本稿では、2つの実世界の魚の動きデータセットのモデリングへの応用について述べる。
論文 参考訳(メタデータ) (2023-11-01T23:45:15Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
本稿では,複数時系列に対する効率的な非線形モデリング手法を提案する。
異なる時系列変数間の非線形相互作用を含む。
実験結果から,提案アルゴリズムは相似的にVAR係数の支持値の同定を改善することが示された。
論文 参考訳(メタデータ) (2023-09-29T11:42:59Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
回帰モデルにおける双方向相互作用項によく適応する推定器を開発する。
我々は,選択戦略では難しい推論モデルの可能性を評価する。
私たちのモデルは、かなり大きなサンプルサイズであっても、ランダムな森林のような、より高度な機械学習者に対して非常に競争力があります。
論文 参考訳(メタデータ) (2023-09-25T10:03:39Z) - StepMix: A Python Package for Pseudo-Likelihood Estimation of Generalized Mixture Models with External Variables [0.7852714805965528]
StepMixは、擬似的な推定のためのオープンソースのPythonパッケージである。
文献からの最も重要なステップワイズ推定手法を実装している。
StepMixはScikit-Lernライブラリのオブジェクト指向設計に従い、追加のRラッパーを提供する。
論文 参考訳(メタデータ) (2023-04-07T22:27:18Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
多くの従来手法では、局所的な関節情報の理解が欠けていた。
提案手法では,グローバル・テンポラル・セルフ・トラジェクトリ・モジュールとクロス・テンポラル・セルフ・トラジェクトリ・モジュールを導入する。
その結果、Human3.6Mデータセットでは2.4%のMPJPEと4.3%のP-MPJPEが改善された。
論文 参考訳(メタデータ) (2022-10-08T12:22:10Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - ProjB: An Improved Bilinear Biased ProjE model for Knowledge Graph
Completion [1.5576879053213302]
この研究は、計算の複雑さが低く、モデル改善の可能性が高いため、ProjE KGEを改善する。
FB15KやWN18のようなベンチマーク知識グラフ(KG)の実験結果から、提案手法はエンティティ予測タスクにおける最先端モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-15T18:18:05Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Relative Pose from SIFT Features [50.81749304115036]
基本行列の未知元と向きとスケールに関する新しい線形制約を導出する。
提案した制約は、合成環境における多くの問題と、80000以上の画像ペア上で公開されている実世界のデータセットでテストされる。
論文 参考訳(メタデータ) (2022-03-15T14:16:39Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Poseur: Direct Human Pose Regression with Transformers [119.79232258661995]
単一画像からの2次元人間のポーズ推定に対する直接回帰に基づくアプローチを提案する。
私たちのフレームワークはエンドツーエンドの差別化が可能で、キーポイント間の依存関係を自然に活用することを学びます。
我々のアプローチは、最も優れたヒートマップベースのポーズ推定手法と比較して好意的に機能する最初の回帰ベースのアプローチである。
論文 参考訳(メタデータ) (2022-01-19T04:31:57Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - A Bayesian approach to modeling topic-metadata relationships [0.0]
トピックとメタデータの関係を推定するために用いられる手法は、トピック構造が直接観察されないことを考慮しなければならない。
これを実現するために頻繁に用いられる手順は、サンプリングされたトピックの比率の複数の繰り返し線形回帰を実行する方法である。
まず、線形回帰をより適切なベータ回帰に置き換えることで、Rパッケージstmからの合成方法の既存の実装を大幅に改良する。
論文 参考訳(メタデータ) (2021-04-06T13:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。