論文の概要: Assessing the Role of Datasets in the Generalization of Motion Deblurring Methods to Real Images
- arxiv url: http://arxiv.org/abs/2209.12675v2
- Date: Tue, 01 Apr 2025 22:22:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 19:59:18.938414
- Title: Assessing the Role of Datasets in the Generalization of Motion Deblurring Methods to Real Images
- Title(参考訳): 実画像への動き分解法の一般化におけるデータセットの役割の評価
- Authors: Guillermo Carbajal, Patricia Vitoria, José Lezama, Pablo Musé,
- Abstract要約: 本稿では, 単純で効果的なモデルに基づいて, シャープ/ブルーのイメージペアを生成するための効率的な手続き手法を提案する。
これにより、現実的なブラー特性を模倣する、無限に多様なトレーニングペアを生成することができる。
実写映像のブルーリングにおける最終課題に対して,より優れた一般化性能を観察した。
- 参考スコア(独自算出の注目度): 5.399800035598185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successfully training end-to-end deep networks for real motion deblurring requires datasets of sharp/blurred image pairs that are realistic and diverse enough to achieve generalization to real blurred images. Obtaining such datasets remains a challenging task. In this paper, we first review the limitations of existing deblurring benchmark datasets and analyze the underlying causes for deblurring networks' lack of generalization to blurry images in the wild. Based on this analysis, we propose an efficient procedural methodology to generate sharp/blurred image pairs based on a simple yet effective model. This allows for generating virtually unlimited diverse training pairs mimicking realistic blur properties. We demonstrate the effectiveness of the proposed dataset by training existing deblurring architectures on the simulated pairs and performing cross-dataset evaluation on three standard datasets of real blurred images. When training with the proposed method, we observed superior generalization performance for the ultimate task of deblurring real motion-blurred photos of dynamic scenes.
- Abstract(参考訳): 実際の動きを損なうためにエンド・ツー・エンドのディープ・ネットワークをトレーニングすることには、実際のぼやけた画像への一般化を実現するのに十分な、現実的で多様なシャープ/ブルーのイメージペアのデータセットが必要である。
このようなデータセットの取得は依然として困難な作業である。
本稿では,既存のデブロワーリングベンチマークデータセットの限界を概観し,デブロワーリングネットワークのデブロワーリング画像に対する一般化の欠如の原因を解析する。
そこで本研究では, 単純で効率的なモデルに基づいて, シャープ/ブルーのイメージペアを生成するための効率的な手続き手法を提案する。
これにより、現実的なブラー特性を模倣する、無限に多様なトレーニングペアを生成することができる。
実画像の3つの標準データセットに対して,シミュレーションペア上で既存のデブロアリングアーキテクチャをトレーニングし,クロスデータセット評価を行うことにより,提案したデータセットの有効性を実証する。
提案手法を用いたトレーニングでは,動的シーンのリアルな動きをブルーリングする究極のタスクにおいて,優れた一般化性能が得られた。
関連論文リスト
- GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring [50.72230109855628]
本稿では,新しい手法を用いて合成されたリアルなぼやけた画像のデータセットであるGS-Blurを提案する。
まず,3Dガウス・スプレイティング(3DGS)を用いて多視点画像から3Dシーンを再構成し,ランダムに生成された運動軌跡に沿ってカメラビューを移動させてぼやけた画像を描画する。
GS-Blurの再構築に様々なカメラトラジェクトリを採用することで、我々のデータセットは現実的で多様な種類のぼかしを含み、現実世界のぼかしをうまく一般化する大規模なデータセットを提供する。
論文 参考訳(メタデータ) (2024-10-31T06:17:16Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
本稿では,露光ブラケット写真を利用して画像復元と拡張作業を統合することを提案する。
実世界のペアの収集が困難であるため,まず合成ペアデータを用いてモデルを事前学習する手法を提案する。
特に,時間変調リカレントネットワーク(TMRNet)と自己教師あり適応手法を提案する。
論文 参考訳(メタデータ) (2024-01-01T14:14:35Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
本稿では,古典的反復法をディープラーニングアプリケーションに組み込んだ非盲検画像デコンボリューションモデルを提案する。
このアルゴリズムは、トレーニング可能な畳み込み層と統合され、復元された画像構造と詳細を強化する。
論文 参考訳(メタデータ) (2022-09-30T11:15:03Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
単分子深度推定(MDE)のためのデータフリー知識蒸留(KD)について検討する。
KDは、訓練された教師モデルからそれを圧縮し、対象領域でのトレーニングデータを欠くことにより、現実世界の深度知覚タスクの軽量モデルを学ぶ。
提案手法は, トレーニング画像の1/6に留まらず, ベースラインKDのマージンが良好であり, 性能も若干向上していることを示す。
論文 参考訳(メタデータ) (2022-08-26T07:10:01Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
形状とSVBRDFを段階的に推定した新しいディープラーニングアーキテクチャを提案する。
ドメインランダム化された幾何学と現実的な材料を用いた大規模合成学習データセットを作成する。
合成データセットと実世界のデータセットの両方の実験により、合成データセットでトレーニングされたネットワークが、実世界の画像に対してうまく一般化できることが示されている。
論文 参考訳(メタデータ) (2020-04-01T12:56:13Z) - Improving Learning Effectiveness For Object Detection and Classification
in Cluttered Backgrounds [6.729108277517129]
本稿では,異種乱雑な背景の学習データセットを自律的に生成するフレームワークを開発する。
提案するフレームワークの学習効率は,複雑で異種な環境で改善されるべきである。
提案フレームワークの性能を実証実験により検討し,COCOデータセットを用いてトレーニングしたモデルと比較した。
論文 参考訳(メタデータ) (2020-02-27T22:28:48Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
深層畳み込みニューラルネットワークは、画像の劣化の最先端技術である。
本稿では,自己監督型動作遅延に対する識別可能なreblurモデルを提案する。
我々の実験は、自己監督された単一画像の劣化が本当に実現可能であることを実証した。
論文 参考訳(メタデータ) (2020-02-10T20:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。