論文の概要: A case study of spatiotemporal forecasting techniques for weather
forecasting
- arxiv url: http://arxiv.org/abs/2209.14782v1
- Date: Thu, 29 Sep 2022 13:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 16:10:48.219780
- Title: A case study of spatiotemporal forecasting techniques for weather
forecasting
- Title(参考訳): 気象予報のための時空間予測手法の事例研究
- Authors: Shakir Showkat Sofi, Ivan Oseledets
- Abstract要約: 本稿では,地域データによる気象予報の様々な手法,すなわち時間的相関を捉えるために,複数の経度点にまたがる予測手法について検討する。
その結果, 列車の動的分解モードに基づく予測モデルでは, トレーニングを必要とせず, ほぼ同等の精度で予測できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The majority of real-world processes are spatiotemporal, and the data
generated by them exhibits both spatial and temporal evolution. Weather is one
of the most important processes that fall under this domain, and forecasting it
has become a crucial part of our daily routine. Weather data analysis is
considered the most complex and challenging task. Although numerical weather
prediction models are currently state-of-the-art, they are resource intensive
and time-consuming. Numerous studies have proposed time-series-based models as
a viable alternative to numerical forecasts. Recent research has primarily
focused on forecasting weather at a specific location. Therefore, models can
only capture temporal correlations. This self-contained paper explores various
methods for regional data-driven weather forecasting, i.e., forecasting over
multiple latitude-longitude points to capture spatiotemporal correlations. The
results showed that spatiotemporal prediction models reduced computational cost
while improving accuracy; in particular, the proposed tensor train dynamic mode
decomposition-based forecasting model has comparable accuracy to ConvLSTM
without the need for training. We use the NASA POWER meteorological dataset to
evaluate the models and compare them with the current state of the art.
- Abstract(参考訳): 現実世界のプロセスの大部分は時空間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
天気はこの領域にある最も重要なプロセスの1つであり、天気予報は私たちの日々のルーチンの重要な部分になっています。
気象データ分析は最も複雑で困難な課題と考えられている。
数値気象予測モデルは現在最先端であるが、資源集約的で時間を要する。
多くの研究が、数値予測の代替として時系列モデルを提案した。
近年の研究は主に特定の場所での天気予報に重点を置いている。
したがって、モデルは時間的相関のみを捉えることができる。
この自己完結型論文は,地域データ駆動型気象予報,すなわち時空間相関を捉えるために,複数の緯度-経度点以上を予報する様々な手法を考察する。
その結果, 時空間予測モデルでは, 精度を向上しながら計算コストを低減し, 特に, 提案したテンソルトレインの動的モード分解に基づく予測モデルは, トレーニングを必要とせず, ConvLSTMと同等の精度を有することがわかった。
我々は、NASA POWER気象データセットを用いて、モデルを評価し、それらを現在の技術と比較する。
関連論文リスト
- WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
時系列およびS時間データにおける拡散モデルの使用について概観し、それらをモデル、タスクタイプ、データモダリティ、実用的なアプリケーションドメインで分類する。
我々は拡散モデルを無条件型と条件付き型に分類し、時系列とS時間データを別々に議論する。
本調査は,医療,レコメンデーション,気候,エネルギー,オーディオ,交通など,さまざまな分野の応用を幅広くカバーしている。
論文 参考訳(メタデータ) (2024-04-29T17:19:40Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
同じ時系列パターンの複雑な時系列パターンが時間によって異なる可能性があるため、トラフィックシリーズの予測は困難である。
このような時間的モデルは、時間的位置と時間的期間に関わらず、共有パラメータ空間を使用し、時間的相関は場所間で類似しており、常に時間にわたって保持するわけではないと仮定する。
サブテンポラリモデルにICDを意識したモデルをエンコードするフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T16:44:56Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
本稿では,多くの研究者によって有効性が証明された時間回帰モデルであるニューラル・ファンクショナル・ネットワーク(FNN)の2つの新しい拡張を提案する。
提案したモデルは気象分野における実用的で挑戦的な降水予測問題を解決するために展開される。
論文 参考訳(メタデータ) (2020-09-11T21:32:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。