Design and analysis of digital communication within an SoC-based control
system for trapped-ion quantum computing
- URL: http://arxiv.org/abs/2209.15601v2
- Date: Thu, 19 Jan 2023 18:09:20 GMT
- Title: Design and analysis of digital communication within an SoC-based control
system for trapped-ion quantum computing
- Authors: Nafis Irtija (1), Jim Plusquellic (1), Eirini Eleni Tsiropoulou (1),
Joshua Goldberg (2), Daniel Lobser (2) and Daniel Stick (2) ((1) University
of New Mexico, Albuquerque, NM, USA, (2) Sandia National Laboratories,
Albuquerque, NM, USA)
- Abstract summary: We evaluate the performance of modern System-on-Chip (SoC) architectures in meeting the control demands associated with performing quantum gates on trapped-ion qubits.
This paper focuses on trapped-ion control systems, the gate abstraction scheme and measured communication rates are applicable to a broad range of quantum computing technologies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic control systems used for quantum computing have become
increasingly complex as multiple qubit technologies employ larger numbers of
qubits with higher fidelity targets. Whereas the control systems for different
technologies share some similarities, parameters like pulse duration,
throughput, real-time feedback, and latency requirements vary widely depending
on the qubit type. In this paper, we evaluate the performance of modern
System-on-Chip (SoC) architectures in meeting the control demands associated
with performing quantum gates on trapped-ion qubits, particularly focusing on
communication within the SoC. A principal focus of this paper is the data
transfer latency and throughput of several high-speed on-chip mechanisms on
Xilinx multi-processor SoCs, including those that utilize direct memory access
(DMA). They are measured and evaluated to determine an upper bound on the time
required to reconfigure a gate parameter. Worst-case and average-case bandwidth
requirements for a custom gate sequencer core are compared with the
experimental results. The lowest-variability, highest-throughput data-transfer
mechanism is DMA between the real-time processing unit (RPU) and the PL, where
bandwidths up to 19.2 GB/s are possible. For context, this enables
reconfiguration of qubit gates in less than 2$\mu$s, comparable to the fastest
gate time. Though this paper focuses on trapped-ion control systems, the gate
abstraction scheme and measured communication rates are applicable to a broad
range of quantum computing technologies.
Related papers
- Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning [68.63990729719369]
The wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications.
This paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals.
We develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters.
arXiv Detail & Related papers (2024-10-23T15:36:43Z) - Memory-optimised Cubic Splines for High-fidelity Quantum Operations [0.0]
Radio-frequency pulses are widespread for the control of quantum bits and the execution of operations in quantum computers.
The ability to tune key pulse parameters such as time-dependent amplitude, phase, and frequency is essential to achieve maximal gate fidelity and errors.
As systems scale, a larger fraction of the control electronic processing will move closer to the qubits.
This will constrain the space available in the memory of the control electronics to load time-resolved pulse parameters at high sampling rates.
arXiv Detail & Related papers (2024-08-15T17:33:37Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors [1.3230570759583702]
This work presents a comparative analysis of the resulting communication overhead among three processor topologies.
According to performance metrics of communication-to-computation ratio, mean qubit hotspotness, and temporal burstiness, the square lattice layout is favourable for quantum computer architectures at a scale.
arXiv Detail & Related papers (2024-02-01T10:16:04Z) - Characterizing the Inter-Core Qubit Traffic in Large-Scale Quantum Modular Architectures [2.465579331213113]
We present a pioneering characterization of the era of monolithic-temporal inter-core qubit traffic in large-scale circuits.
The programs are executed on an all-to-all connected-core architecture that supports up to around 1000 qubits.
Based on the showcased results, we provide a set of guidelines to improve mapping quantum circuits to multi-core processors, and lay the foundations of benchmarking large-scale multi-core architectures.
arXiv Detail & Related papers (2023-10-03T09:54:41Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
We numerically simulate and characterize the operation of various quantum processors.
We identify and assess quantum complexity by comparing the performance of each device against benchmark lines.
We find that the majorization-based benchmark holds as long as the circuits' output states have, on average, high purity.
arXiv Detail & Related papers (2023-04-10T23:01:10Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - SQ-CARS: A Scalable Quantum Control and Readout System [1.304268238836389]
SQ-CARS is a system based on the ZCU111 evaluation kit to control and measure superconducting qubits.
The system offers an interactive Python framework, making it user-friendly.
It also features on-board data processing like tunable low pass filters and rotation blocks, enabling lock-in detection and low-latency active feedback for quantum experiments.
arXiv Detail & Related papers (2022-03-03T05:33:11Z) - Scalable High-Performance Fluxonium Quantum Processor [0.0]
We propose a superconducting quantum information processor based on compact high-coherence fluxoniums with suppressed crosstalk.
We numerically investigate the cross resonance controlled-NOT and the differential AC-Stark controlled-Z operations, revealing low gate error for qubit-qubit detuning bandwidth of up to 1 GHz.
arXiv Detail & Related papers (2022-01-23T21:49:04Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.