論文の概要: Family-Based Fingerprint Analysis: A Position Paper
- arxiv url: http://arxiv.org/abs/2209.15620v1
- Date: Tue, 27 Sep 2022 19:42:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 17:11:09.586936
- Title: Family-Based Fingerprint Analysis: A Position Paper
- Title(参考訳): 家族による指紋分析:位置紙
- Authors: Carlos Diego Nascimento Damasceno and Daniel Str\"uber
- Abstract要約: ソフトウェアのミスコンフィグレーションは、Webアプリケーションのセキュリティリスクのトップ10の1つだ。
本稿では,モデル学習と家族分析の原則をソフトウェアフィンガープリントに適用するフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thousands of vulnerabilities are reported on a monthly basis to security
repositories, such as the National Vulnerability Database. Among these
vulnerabilities, software misconfiguration is one of the top 10 security risks
for web applications. With this large influx of vulnerability reports, software
fingerprinting has become a highly desired capability to discover distinctive
and efficient signatures and recognize reportedly vulnerable software
implementations. Due to the exponential worst-case complexity of fingerprint
matching, designing more efficient methods for fingerprinting becomes highly
desirable, especially for variability-intensive systems where optional features
add another exponential factor to its analysis. This position paper presents
our vision of a framework that lifts model learning and family-based analysis
principles to software fingerprinting. In this framework, we propose unifying
databases of signatures into a featured finite state machine and using presence
conditions to specify whether and in which circumstances a given input-output
trace is observed. We believe feature-based signatures can aid performance
improvements by reducing the size of fingerprints under analysis.
- Abstract(参考訳): 毎月、national vulnerability databaseなどのセキュリティリポジトリに何千もの脆弱性が報告されている。
これらの脆弱性のうち、ソフトウェアの設定ミスはwebアプリケーションのセキュリティリスクのトップ10の1つです。
この大規模な脆弱性報告によって、ソフトウェアフィンガープリントは、独特で効率的なシグネチャを発見し、脆弱なソフトウェア実装を認識するために、非常に望ましい機能になっている。
指紋マッチングの最悪ケースが指数関数的に複雑になるため、指紋認証のためのより効率的な方法の設計が極めて望ましいものとなり、特にオプション機能によってその分析に別の指数関数的要素が加えられる可変性集約システムでは特に好まれる。
本稿では,モデル学習と家族分析の原則をソフトウェアフィンガープリントに適用するフレームワークの展望を示す。
本稿では,署名のデータベースを特徴的有限状態機械に統一し,存在条件を用いて与えられた入力出力トレースが観測される状況と状況を特定する。
機能ベースのシグネチャは,解析対象の指紋のサイズを小さくすることで,パフォーマンスの向上に役立つと考えている。
関連論文リスト
- Divide and Conquer based Symbolic Vulnerability Detection [0.16385815610837165]
本稿では,シンボル実行と制御フローグラフ解析に基づく脆弱性検出手法を提案する。
提案手法では,無関係なプログラム情報を除去するために,分割・分散アルゴリズムを用いる。
論文 参考訳(メタデータ) (2024-09-20T13:09:07Z) - Latent fingerprint enhancement for accurate minutiae detection [8.996826918574463]
本稿では,GAN(Generative Adversary Network)を用いてLFE(Latent Fingerprint Enhancement)を再定義する手法を提案する。
生成過程の微妙な情報を直接最適化することにより、このモデルは、地味な事例に対して例外的な忠実さを示す強化された潜伏指紋を生成する。
筆者らのフレームワークは, 微小な位置と配向場を統合し, 局所的および構造的指紋の特徴の保存を確実にする。
論文 参考訳(メタデータ) (2024-09-18T08:35:31Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - Graphene: Infrastructure Security Posture Analysis with AI-generated Attack Graphs [14.210866237959708]
本稿では,コンピューティングインフラストラクチャのセキュリティ状態の詳細な解析を行うための高度なシステムであるGrapheneを提案する。
デバイスの詳細やソフトウェアバージョンといったユーザが提供する情報を使用して、Grapheneは包括的なセキュリティアセスメントを実行する。
このシステムは、ハードウェア、システム、ネットワーク、暗号化を含むセキュリティ層を分析することによって、全体的なアプローチを取る。
論文 参考訳(メタデータ) (2023-12-20T15:38:59Z) - A Systematic Evaluation of Automated Tools for Side-Channel Vulnerabilities Detection in Cryptographic Libraries [6.826526973994114]
文献を調査し,34のサイドチャネル検出フレームワークの分類を行った。
次に、5つの有望な検出ツールの選択に基づいて、代表的な暗号操作のベンチマークを構築しました。
最近公開されたサイドチャネル脆弱性の分類を提供する。
既存のツールでは,SIMD命令のサポートの欠如,暗黙のフロー,内部シークレット生成など,さまざまな理由から脆弱性を見つけるのに苦労しています。
論文 参考訳(メタデータ) (2023-10-12T09:18:26Z) - FedSOV: Federated Model Secure Ownership Verification with Unforgeable
Signature [60.99054146321459]
フェデレートラーニングにより、複数のパーティがプライベートデータを公開せずにグローバルモデルを学ぶことができる。
本稿では,FedSOVという暗号署名に基づくフェデレート学習モデルのオーナシップ検証手法を提案する。
論文 参考訳(メタデータ) (2023-05-10T12:10:02Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
信号品質の認識は、認識率を増大させ、マルチセンサー環境における決定を著しく支援することが見出されている。
本稿では, 指紋画像の向きテンソルを用いて, ノイズ, 構造不足, ぼやけなどの信号障害を, 対称性記述子の助けを借りて定量化する。
定量的な結果は、あらゆる面において品質意識を優先し、認識率を高め、異なるスキルを持つ専門家を効果的かつ効果的に融合させる。
論文 参考訳(メタデータ) (2022-11-24T12:17:49Z) - Fingerprint recognition with embedded presentation attacks detection:
are we ready? [6.0168714922994075]
セキュリティアプリケーションのための指紋認証システムの拡散は,ソフトウェアベースのプレゼンテーション攻撃アルゴリズム(PAD)をそのようなシステムに組み込むことを急ぐ。
現在の研究では、指紋認証システムに組み込む際の有効性についてはあまり言及されていない。
本稿では,PADと検証段階を逐次実施する場合の2つの個別システムの受信者動作特性(ROC)の関係を確率論的にモデル化した性能シミュレータを提案する。
論文 参考訳(メタデータ) (2021-10-20T13:53:16Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
既存の潜伏指紋登録手法は、主にミツバチ間の対応を確立することに基づいている。
本研究では,一対の指紋間の空間的変換を推定する,最小限の潜伏指紋登録手法を提案する。
提案手法は,特に挑戦的な条件下で,最先端の登録性能を実現する。
論文 参考訳(メタデータ) (2020-05-12T15:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。