論文の概要: Towards Learned Simulators for Cell Migration
- arxiv url: http://arxiv.org/abs/2210.01123v1
- Date: Sun, 2 Oct 2022 14:01:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 14:06:55.393559
- Title: Towards Learned Simulators for Cell Migration
- Title(参考訳): 細胞移動シミュレーションの学習に向けて
- Authors: Koen Minartz, Yoeri Poels, Vlado Menkovski
- Abstract要約: 細胞力学のための神経シミュレーターは、実験室実験や従来の方法を拡張して、細胞と物理的環境との相互作用の理解を高めることができる。
本稿では,単一細胞移動のダイナミクスを再現できる自己回帰確率モデルを提案する。
標準の単段階学習手法が不整合安定性をもたらすだけでなく,ダイナミクスの側面を正確に把握できないことも観察した。
- 参考スコア(独自算出の注目度): 2.5331228143087565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulators driven by deep learning are gaining popularity as a tool for
efficiently emulating accurate but expensive numerical simulators. Successful
applications of such neural simulators can be found in the domains of physics,
chemistry, and structural biology, amongst others. Likewise, a neural simulator
for cellular dynamics can augment lab experiments and traditional computational
methods to enhance our understanding of a cell's interaction with its physical
environment. In this work, we propose an autoregressive probabilistic model
that can reproduce spatiotemporal dynamics of single cell migration,
traditionally simulated with the Cellular Potts model. We observe that standard
single-step training methods do not only lead to inconsistent rollout
stability, but also fail to accurately capture the stochastic aspects of the
dynamics, and we propose training strategies to mitigate these issues. Our
evaluation on two proof-of-concept experimental scenarios shows that neural
methods have the potential to faithfully simulate stochastic cellular dynamics
at least an order of magnitude faster than a state-of-the-art implementation of
the Cellular Potts model.
- Abstract(参考訳): ディープラーニングによって駆動されるシミュレータは、正確だが高価な数値シミュレータを効率的にエミュレートするためのツールとして人気を集めている。
このような神経シミュレーターの成功例は、物理学、化学、構造生物学などの領域で見ることができる。
同様に、細胞力学のための神経シミュレーターは、実験室実験と従来の計算方法を拡張し、細胞と物理的環境との相互作用の理解を高めることができる。
本研究では,従来セルラポッツモデルでシミュレートされていた単一細胞移動の時空間ダイナミクスを再現できる自己回帰確率モデルを提案する。
標準の単段トレーニング手法はロールアウト安定性の一貫性を損なうだけでなく,ダイナミクスの確率的側面を正確に把握できないため,これらの問題を緩和するためのトレーニング戦略を提案する。
概念実証実験の2つのシナリオの評価から, ニューラルネットワークは, セルポッツモデルの最先端実装よりも少なくとも1桁早く, 確率的細胞力学を忠実にシミュレートできる可能性が示唆された。
関連論文リスト
- GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体としてモデル化し、理想化された仮定なしに現実的な変形を考慮に入れた。
ガウシムは質量や運動量保存などの明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
本稿では,既存の物理法則を学習的補正と統合するニューラルネットワーク (NeuMA) を提案する。
また,粒子駆動型3次元ガウス平滑化モデルであるParticle-GSを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:43:36Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
微分可能シミュレーションは、高速収束と安定した訓練を約束する。
本研究はこれらの課題を克服するための新しい微分可能シミュレーションフレームワークを提案する。
我々のフレームワークは並列化なしで数分で四足歩行を学習できる。
論文 参考訳(メタデータ) (2024-03-21T22:18:59Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
軟部組織の変位場を粘弾性特性で予測する深層学習法を提案する。
提案手法は従来のCNNモデルよりも精度が高い。
本調査は,仮想現実における深層学習のギャップを埋めるのに役立つものと期待されている。
論文 参考訳(メタデータ) (2023-01-11T18:17:10Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Constraint-based graph network simulator [9.462808515258464]
制約に基づく学習シミュレーションのためのフレームワークを提案する。
本稿では,制約関数としてグラフニューラルネットワークを用い,勾配降下を制約解として実装する。
我々のモデルは、トップラーニングシミュレータよりも優れた、あるいは同等のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2021-12-16T19:15:11Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。