論文の概要: Neural-network solutions to stochastic reaction networks
- arxiv url: http://arxiv.org/abs/2210.01169v1
- Date: Thu, 29 Sep 2022 07:27:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 17:10:52.846488
- Title: Neural-network solutions to stochastic reaction networks
- Title(参考訳): 確率的反応ネットワークに対するニューラルネットワークソリューション
- Authors: Ying Tang, Jiayu Weng, Pan Zhang
- Abstract要約: 本稿では,化学マスター方程式の解法として,変分自己回帰ネットワークを用いた機械学習手法を提案する。
提案手法は, 種数状態空間における結合確率分布の時間的変化を追跡する。
遺伝的トグルスイッチと初期生命自己複製器において、時間とともに確率分布を正確に生成することを示した。
- 参考スコア(独自算出の注目度): 7.021105583098606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The stochastic reaction network is widely used to model stochastic processes
in physics, chemistry and biology. However, the size of the state space
increases exponentially with the number of species, making it challenging to
investigate the time evolution of the chemical master equation for the reaction
network. Here, we propose a machine-learning approach using the variational
autoregressive network to solve the chemical master equation. The approach is
based on the reinforcement learning framework and does not require any data
simulated in prior by another method. Different from simulating single
trajectories, the proposed approach tracks the time evolution of the joint
probability distribution in the state space of species counts, and supports
direct sampling on configurations and computing their normalized joint
probabilities. We apply the approach to various systems in physics and biology,
and demonstrate that it accurately generates the probability distribution over
time in the genetic toggle switch, the early life self-replicator, the epidemic
model and the intracellular signaling cascade. The variational autoregressive
network exhibits a plasticity in representing the multi-modal distribution by
feedback regulations, cooperates with the conservation law, enables
time-dependent reaction rates, and is efficient for high-dimensional reaction
networks with allowing a flexible upper count limit. The results suggest a
general approach to investigate stochastic reaction networks based on modern
machine learning.
- Abstract(参考訳): 確率反応ネットワークは物理学、化学、生物学の確率過程のモデル化に広く用いられている。
しかし、状態空間のサイズは種数とともに指数関数的に増加するため、反応ネットワークの化学マスター方程式の時間的進化を調べることは困難である。
本稿では,変分自己回帰ネットワークを用いた機械学習による化学マスター方程式の解法を提案する。
このアプローチは強化学習フレームワークに基づいており、他の方法で事前にシミュレートされたデータを必要としない。
単一軌道のシミュレーションと異なり、提案手法は種数の状態空間における結合確率分布の時間的変化を追跡し、構成の直接サンプリングと正規化された結合確率の計算をサポートする。
本手法を物理・生物学の様々なシステムに適用し,遺伝子トグルスイッチ,初期生命自己複製器,流行モデル,細胞内シグナルカスケードにおいて,時間とともに確率分布を正確に生成することを示した。
変動自己回帰ネットワークは、フィードバック規制による多モード分布の可塑性を示し、保存法と協調し、時間依存性の反応速度を可能にし、フレキシブルな上数制限を許容する高次元反応ネットワークに効率的である。
その結果,現代の機械学習に基づく確率的反応ネットワークの一般的な研究手法が示唆された。
関連論文リスト
- Learning Theory of Distribution Regression with Neural Networks [6.961253535504979]
完全連結ニューラルネットワーク(FNN)による近似理論と分布回帰の学習理論を確立する。
古典回帰法とは対照的に、分布回帰の入力変数は確率測度である。
論文 参考訳(メタデータ) (2023-07-07T09:49:11Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Bayesian Inference for Jump-Diffusion Approximations of Biochemical
Reaction Networks [26.744964200606784]
マルコフ連鎖モンテカルロに基づく抽出可能なベイズ推定アルゴリズムを開発した。
このアルゴリズムは、部分的に観察されたマルチスケールの生死過程の例に対して数値的に評価される。
論文 参考訳(メタデータ) (2023-04-13T14:57:22Z) - Differentiable Programming of Chemical Reaction Networks [63.948465205530916]
化学反応ネットワークは、自然によって使用される最も基本的な計算基板の1つである。
膜によって分離された複数のチャンバーを持つシステムと同様に、よく混合されたシングルチャンバーシステムについて検討した。
我々は、微分可能な最適化と適切な正規化が相まって、非自明なスパース反応ネットワークを発見することを実証した。
論文 参考訳(メタデータ) (2023-02-06T11:41:14Z) - Path sampling of recurrent neural networks by incorporating known
physics [0.0]
我々は、再帰的なニューラルネットワークに一般的な熱力学または運動論的制約を組み込むことができる経路サンプリング手法を示す。
本稿では,長期記憶ネットワークとして広く利用されているリカレントニューラルネットワークについて述べる。
我々の手法は、他の生成人工知能モデルや、物理・社会科学の様々な分野における一般的な時系列に容易に一般化できる。
論文 参考訳(メタデータ) (2022-03-01T16:35:50Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Deep learning approaches to surrogates for solving the diffusion
equation for mechanistic real-world simulations [0.0]
医学的、生物学的、物理的、工学的なモデルでは、偏微分方程式(PDE)の数値解は、過激にシミュレーションを遅くすることができる。
このような複雑な数値問題に対する近似解を提供するために訓練されたニューラルネットワークである機械学習のサロゲートは、直接計算に比べて数桁のスピードアップを提供することが多い。
畳み込みニューラルネットワークを用いて拡散方程式の定常解を近似する。
論文 参考訳(メタデータ) (2021-02-10T16:15:17Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Watch and learn -- a generalized approach for transferrable learning in
deep neural networks via physical principles [0.0]
本研究では,物理状態の異なる統計物理学における問題に対して,完全に伝達可能な学習を実現するための教師なし学習手法を実証する。
逐次ニューラルネットワークに基づくシーケンスモデルを広範囲のディープニューラルネットワークに結合することにより、古典的な統計力学系の平衡確率分布と粒子間相互作用モデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-03-03T18:37:23Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
コンピュータ支援のレトロシンセシスは、化学と計算機科学の双方から新たな関心を集めている。
本稿では,グラフニューラルネットワーク上に構築された条件付きグラフィカルモデルであるConditional Graph Logic Networkを用いて,この課題に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-06T05:36:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。