論文の概要: Differentiable Programming of Chemical Reaction Networks
- arxiv url: http://arxiv.org/abs/2302.02714v1
- Date: Mon, 6 Feb 2023 11:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 16:57:45.021864
- Title: Differentiable Programming of Chemical Reaction Networks
- Title(参考訳): 化学反応ネットワークの微分可能プログラミング
- Authors: Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson
- Abstract要約: 化学反応ネットワークは、自然によって使用される最も基本的な計算基板の1つである。
膜によって分離された複数のチャンバーを持つシステムと同様に、よく混合されたシングルチャンバーシステムについて検討した。
我々は、微分可能な最適化と適切な正規化が相まって、非自明なスパース反応ネットワークを発見することを実証した。
- 参考スコア(独自算出の注目度): 63.948465205530916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a differentiable formulation of abstract chemical reaction
networks (CRNs) that can be trained to solve a variety of computational tasks.
Chemical reaction networks are one of the most fundamental computational
substrates used by nature. We study well-mixed single-chamber systems, as well
as systems with multiple chambers separated by membranes, under mass-action
kinetics. We demonstrate that differentiable optimisation, combined with proper
regularisation, can discover non-trivial sparse reaction networks that can
implement various sorts of oscillators and other chemical computing devices.
- Abstract(参考訳): 我々は,様々な計算課題を解くために訓練できる抽象化学反応ネットワーク(CRN)の微分可能な定式化を提案する。
化学反応ネットワークは自然界で使われている最も基本的な計算基盤の一つである。
我々は,混合単一チャンバーシステム,および複数のチャンバーを膜で分離したシステムについて質量反応速度論的に検討した。
様々な種類の発振器や他の化学計算装置を実装できる非自明なスパース反応ネットワークを、適切な正則化と組み合わせることで、微分可能最適化が発見できることを実証する。
関連論文リスト
- Autonomous Learning of Generative Models with Chemical Reaction Network
Ensembles [0.0]
我々は、幅広い種類の化学系が複雑な分布を自律的に学習できる一般的なアーキテクチャを開発する。
提案手法は, 相対エントロピーコスト関数の勾配降下という, 機械学習の最適化作業の化学的実装の形式を取り入れたものである。
論文 参考訳(メタデータ) (2023-11-02T03:46:23Z) - Probing reaction channels via reinforcement learning [4.523974776690403]
化学反応経路に沿って反応と生成物を結合する重要な構成を同定するための強化学習に基づく手法を提案する。
これらの構成から複数の軌道を撮影することで、遷移経路のアンサンブルに集中する構成のアンサンブルを生成することができる。
結果として得られる解は、コミッタ関数 (committor function) と呼ばれ、反応の力学情報を符号化し、反応速度を評価するのに使うことができる。
論文 参考訳(メタデータ) (2023-05-27T17:22:32Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Neural-network solutions to stochastic reaction networks [7.021105583098606]
本稿では,化学マスター方程式の解法として,変分自己回帰ネットワークを用いた機械学習手法を提案する。
提案手法は, 種数状態空間における結合確率分布の時間的変化を追跡する。
遺伝的トグルスイッチと初期生命自己複製器において、時間とともに確率分布を正確に生成することを示した。
論文 参考訳(メタデータ) (2022-09-29T07:27:59Z) - Modeling Diverse Chemical Reactions for Single-step Retrosynthesis via
Discrete Latent Variables [43.900173434781905]
単段階の逆合成の目標は、1回の反応で標的生成物の合成に繋がる可能性のある反応物質を同定することである。
既存の配列に基づくレトロ合成法は、生成物から反応物へのレトロ合成を配列から配列への翻訳問題として扱う。
本稿では,条件付き変分オートエンコーダを1ステップの逆合成に組み込んだRetroDVCAEを提案する。
論文 参考訳(メタデータ) (2022-08-10T14:50:32Z) - A Grid-Structured Model of Tubular Reactors [61.38002492702646]
提案モデルは完全に偏微分方程式の既知の形式に基づくものや,多層パーセプトロンなどの汎用機械学習コンポーネントを含むものもある。
本研究では, 固定層反応器の状態を記述するために, 限られた量のデータを用いて, 提案モデルを訓練可能であることを示す。
論文 参考訳(メタデータ) (2021-12-13T19:54:23Z) - Programming and Training Rate-Independent Chemical Reaction Networks [9.001036626196258]
天然の生化学系は一般的に化学反応ネットワーク(CRN)によってモデル化される
CRNは合成化学計算の仕様言語として使用できる。
本稿では, NC-CRNのプログラム手法について述べる。
論文 参考訳(メタデータ) (2021-09-20T15:31:03Z) - Kinetics-Informed Neural Networks [0.0]
我々は、通常の微分方程式を解くために、サロゲートモデルを構築するための基礎関数としてフィードフォワード人工ニューラルネットワークを用いる。
正規化多目的最適化設定におけるニューラルネットと運動モデルパラメータの同時学習により,逆問題の解が導かれることを示す。
この逆運動的ODEに対する代理的アプローチは、過渡的なデータに基づく反応機構の解明に役立てることができる。
論文 参考訳(メタデータ) (2020-11-30T00:07:09Z) - Exact representations of many body interactions with RBM neural networks [77.34726150561087]
我々は、RBMの表現力を利用して、多体接触相互作用を1体演算子に正確に分解する。
この構成は、ハバードモデルでよく知られたヒルシュの変換を、核物理学におけるピオンレスFTのようなより複雑な理論に一般化する。
論文 参考訳(メタデータ) (2020-05-07T15:59:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。