論文の概要: Quark: A Gradient-Free Quantum Learning Framework for Classification
Tasks
- arxiv url: http://arxiv.org/abs/2210.01311v1
- Date: Sun, 2 Oct 2022 19:23:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 15:36:55.673419
- Title: Quark: A Gradient-Free Quantum Learning Framework for Classification
Tasks
- Title(参考訳): Quark: タスク分類のためのグラディエントな量子学習フレームワーク
- Authors: Zhihao Zhang, Zhuoming Chen, Heyang Huang, Zhihao Jia
- Abstract要約: 量子最適化を用いて量子MLモデルを最適化する勾配量子学習フレームワークであるQuarkを紹介する。
クォークは勾配のない計算に頼らず、古典的量子相互作用を頻繁に避ける。
- 参考スコア(独自算出の注目度): 2.6763498831034034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As more practical and scalable quantum computers emerge, much attention has
been focused on realizing quantum supremacy in machine learning. Existing
quantum ML methods either (1) embed a classical model into a target Hamiltonian
to enable quantum optimization or (2) represent a quantum model using
variational quantum circuits and apply classical gradient-based optimization.
The former method leverages the power of quantum optimization but only supports
simple ML models, while the latter provides flexibility in model design but
relies on gradient calculation, resulting in barren plateau (i.e., gradient
vanishing) and frequent classical-quantum interactions. To address the
limitations of existing quantum ML methods, we introduce Quark, a gradient-free
quantum learning framework that optimizes quantum ML models using quantum
optimization. Quark does not rely on gradient computation and therefore avoids
barren plateau and frequent classical-quantum interactions. In addition, Quark
can support more general ML models than prior quantum ML methods and achieves a
dataset-size-independent optimization complexity. Theoretically, we prove that
Quark can outperform classical gradient-based methods by reducing model query
complexity for highly non-convex problems; empirically, evaluations on the Edge
Detection and Tiny-MNIST tasks show that Quark can support complex ML models
and significantly reduce the number of measurements needed for discovering
near-optimal weights for these tasks.
- Abstract(参考訳): より実用的でスケーラブルな量子コンピュータが出現するにつれて、機械学習における量子超越性の実現に多くの注目を集めている。
既存の量子ML法は、(1)古典的モデルをハミルトンに埋め込んで量子最適化を可能にするか、(2)変分量子回路を用いて量子モデルを表現し、古典的勾配に基づく最適化を適用する。
前者は量子最適化の力を利用するが、単純なMLモデルしかサポートしていないが、後者はモデル設計の柔軟性を提供するが、勾配計算に依存しており、バレンプラトー(勾配消滅)や古典量子相互作用が頻繁に発生する。
既存の量子ML手法の限界に対処するため、量子最適化を用いて量子MLモデルを最適化する勾配のない量子学習フレームワークQuarkを紹介した。
クォークは勾配計算に依存しないため、不毛高原やしばしば古典量子相互作用を避ける。
さらに、Quarkは従来の量子MLメソッドよりも一般的なMLモデルをサポートし、データセットサイズに依存しない最適化の複雑さを実現する。
理論的には、クォークは、非常に凸でない問題に対するモデルクエリの複雑さを減らすことによって、古典的な勾配に基づく方法よりも優れており、経験的に、エッジ検出と小さなmnistタスクの評価は、クォークは複雑なmlモデルをサポートし、これらのタスクの最適に近い重みを見つけるのに必要な測定回数を大幅に削減できることを示している。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Explicit quantum surrogates for quantum kernel models [0.6834295298053009]
暗黙的モデルの明示的量子サロゲート(EQS)を作成するための量子古典ハイブリッドアルゴリズムを提案する。
これには、暗黙のモデルから観測可能なものを対角化し、対応する量子回路を構築することが含まれる。
EQSフレームワークは予測コストを削減し、不毛の高原問題を軽減し、両方のQMLアプローチの長所を組み合わせる。
論文 参考訳(メタデータ) (2024-08-06T07:15:45Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Truncation technique for variational quantum eigensolver for Molecular
Hamiltonians [0.0]
変分量子固有解法(VQE)はノイズ量子デバイスのための最も有望な量子アルゴリズムの1つである。
そこで本研究では, トランケートされたハミルトニアンを用いて, 最適化手順を開始する物理直感的なトランケーション手法を提案する。
この戦略により、量子コンピュータ上でのハミルトニアンの期待値に対する必要な評価回数を減らすことができる。
論文 参考訳(メタデータ) (2024-02-02T18:45:12Z) - Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows [5.618657159109373]
変分量子アルゴリズム(VQA)は、短期的な量子優位性の実証の有望な候補として特定されている。
本報告では,本論文で研究されている浅層アンザッツに対して,同様のレベルの貯蓄を実現するための浅層影に基づくプロトコルを提案する。
VQAが強力な選択肢となる量子情報、すなわち変分量子状態準備と変分量子回路合成の2つの重要な応用が示されている。
論文 参考訳(メタデータ) (2023-09-09T11:00:39Z) - Adapting Pre-trained Language Models for Quantum Natural Language
Processing [33.86835690434712]
事前学習された表現は、エンドツーエンドの量子モデルの容量を50%から60%増加させることができることを示す。
量子シミュレーション実験では、事前訓練された表現は、エンドツーエンドの量子モデルの容量を50%から60%増加させることができる。
論文 参考訳(メタデータ) (2023-02-24T14:59:02Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
パラメータ化混合状態に対する量子自然勾配降下の一般化を導入する。
また、堅牢な一階近似アルゴリズム、Quantum-Probabilistic Mirror Descentを提供する。
我々のアプローチは、モデル選択における柔軟性を実現するために、それまでのサンプル効率の手法を拡張しました。
論文 参考訳(メタデータ) (2022-06-09T17:58:15Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
量子機械学習は、ゲートベースの量子コンピュータをプログラムするための支配的なパラダイムとして登場しつつある。
この本は、確率と線形代数の背景を持つエンジニアの聴衆のために、量子機械学習の自己完結した紹介を提供する。
論文 参考訳(メタデータ) (2022-05-11T12:10:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Higgs analysis with quantum classifiers [0.0]
我々は、$tbartH(bbarb)$分類問題に対する2つの量子分類器モデルを開発した。
この結果は、量子機械学習(QML)メソッドが類似あるいはより良い性能を持つことができるという概念の証明として役立ちます。
論文 参考訳(メタデータ) (2021-04-15T18:01:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。