論文の概要: A Concentration Bound for Distributed Stochastic Approximation
- arxiv url: http://arxiv.org/abs/2210.04253v1
- Date: Sun, 9 Oct 2022 13:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 15:59:06.364365
- Title: A Concentration Bound for Distributed Stochastic Approximation
- Title(参考訳): 分布確率近似のための濃度境界
- Authors: Harsh Dolhare and Vivek Borkar
- Abstract要約: 我々は、Tsitsiklis, Bertsekas, Athansの古典的モデルを再検討し、コンセンサスによる分散近似について検討する。
主な結果は、ODEアプローチを用いたこのスキームの解析であり、適切な繰り返しのトラッキングエラーに対して高い確率でバウンドされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit the classical model of Tsitsiklis, Bertsekas and Athans for
distributed stochastic approximation with consensus. The main result is an
analysis of this scheme using the ODE approach to stochastic approximation,
leading to a high probability bound for the tracking error between suitably
interpolated iterates and the limiting differential equation. Several future
directions will also be highlighted.
- Abstract(参考訳): 我々は,分散確率近似のためのtsitsiklis,bertsekas,athansの古典モデルを再検討する。
主な結果は、確率近似へのODEアプローチを用いたこのスキームの解析であり、好ましく補間された反復と制限微分方程式の間の追従誤差に高い確率境界をもたらす。
今後の方向性も強調される。
関連論文リスト
- Improving Probabilistic Diffusion Models With Optimal Covariance Matching [27.2761325416843]
対角的共分散を学習するための新しい手法を提案する。
提案手法は,拡散モデルと潜伏拡散モデルの両方のサンプリング効率,リコール率,および可能性を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-16T05:47:12Z) - Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem [0.0]
変分推論問題におけるエビデンス下界(ELBO)の勾配を近似する解析解を提案する。
提案手法は線形計算複雑性とともに精度と収束率を示す。
論文 参考訳(メタデータ) (2024-04-16T13:19:46Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
我々はメトロポリス・ハスティングス検層の自動識別アルゴリズムを開発した。
難解な対象密度に対する期待値として表現された目的に対して勾配に基づく最適化を適用する。
論文 参考訳(メタデータ) (2023-06-13T17:56:02Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Error Bounds for Flow Matching Methods [38.9898500163582]
フローマッチング法は、2つの任意の確率分布間のフローを近似する。
近似誤差に$L2$の値とデータ分布に一定の規則性を仮定し, 完全に決定論的サンプリングを用いたフローマッチング手順の誤差境界を提案する。
論文 参考訳(メタデータ) (2023-05-26T12:13:53Z) - The Past Does Matter: Correlation of Subsequent States in Trajectory
Predictions of Gaussian Process Models [0.7734726150561089]
モデルの出力と軌道分布の近似を考察する。
本研究では,不確実性伝播に関するこれまでの研究は,予測された軌道のその後の状態の間に独立性の仮定を誤って含んでいたことを示す。
論文 参考訳(メタデータ) (2022-11-20T22:19:39Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Stochastic Normalizing Flows [52.92110730286403]
微分方程式(SDE)を用いた最大推定と変分推論のための正規化フロー(VI)を導入する。
粗い経路の理論を用いて、基礎となるブラウン運動は潜在変数として扱われ、近似され、神経SDEの効率的な訓練を可能にする。
これらのSDEは、与えられたデータセットの基盤となる分布からサンプリングする効率的なチェーンを構築するために使用することができる。
論文 参考訳(メタデータ) (2020-02-21T20:47:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。