論文の概要: Finite-Time Analysis of Discrete-Time Stochastic Interpolants
- arxiv url: http://arxiv.org/abs/2502.09130v1
- Date: Thu, 13 Feb 2025 10:07:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:40.649303
- Title: Finite-Time Analysis of Discrete-Time Stochastic Interpolants
- Title(参考訳): 離散時間確率補間器の有限時間解析
- Authors: Yuhao Liu, Yu Chen, Rui Hu, Longbo Huang,
- Abstract要約: 補間フレームワークの最初の離散時間解析を行い、分布推定誤差の有限時間上限を導出する。
この結果は収束加速のための効率的なスケジュールを設計するための新しい方法を提供する。
- 参考スコア(独自算出の注目度): 32.27430900126022
- License:
- Abstract: The stochastic interpolant framework offers a powerful approach for constructing generative models based on ordinary differential equations (ODEs) or stochastic differential equations (SDEs) to transform arbitrary data distributions. However, prior analyses of this framework have primarily focused on the continuous-time setting, assuming a perfect solution of the underlying equations. In this work, we present the first discrete-time analysis of the stochastic interpolant framework, where we introduce an innovative discrete-time sampler and derive a finite-time upper bound on its distribution estimation error. Our result provides a novel quantification of how different factors, including the distance between source and target distributions and estimation accuracy, affect the convergence rate and also offers a new principled way to design efficient schedules for convergence acceleration. Finally, numerical experiments are conducted on the discrete-time sampler to corroborate our theoretical findings.
- Abstract(参考訳): 確率補間フレームワークは、任意のデータ分布を変換するために、通常の微分方程式(ODE)や確率微分方程式(SDE)に基づいて生成モデルを構築するための強力なアプローチを提供する。
しかしながら、このフレームワークの先行分析は、基礎となる方程式の完全な解を仮定して、主に連続時間設定に焦点を当てている。
本研究では,確率補間フレームワークの最初の離散時間解析を行い,新しい離散時間サンプリング器を導入し,分布推定誤差の有限時間上限を導出する。
本結果は,ソースとターゲットの分布距離や推定精度など,異なる要因が収束率にどのように影響するかを定量的化し,収束促進のための効率的なスケジュールを設計するための新しい原理的手法を提供する。
最後に, 離散時間サンプリング器を用いて数値実験を行い, 理論的知見を裏付ける。
関連論文リスト
- Sampling in High-Dimensions using Stochastic Interpolants and Forward-Backward Stochastic Differential Equations [8.509310102094512]
本稿では,高次元確率分布からサンプルを抽出する拡散型アルゴリズムのクラスを提案する。
我々の手法は、確率密度の時間インデクシングされたコレクションを定義するための補間フレームワークに依存している。
提案アルゴリズムは,従来の手法では処理が困難であった分布から,効果的にサンプルを抽出できることを実証する。
論文 参考訳(メタデータ) (2025-02-01T07:27:11Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Stochastic Interpolants: A Unifying Framework for Flows and Diffusions [16.95541777254722]
フローベースおよび拡散ベースを統一する生成モデルのクラスを紹介する。
これらのモデルは、Albergo & VandenEijnden (2023) で提案されたフレームワークを拡張し、確率補間子と呼ばれる広範囲の連続時間プロセスの使用を可能にする。
これらの補間材は、2つの所定の密度のデータと、橋を柔軟に形作る追加の潜伏変数を組み合わせることで構築される。
論文 参考訳(メタデータ) (2023-03-15T17:43:42Z) - Scalable Dynamic Mixture Model with Full Covariance for Probabilistic
Traffic Forecasting [16.04029885574568]
時間変化誤差過程に対するゼロ平均ガウス分布の動的混合を提案する。
提案手法は,学習すべきパラメータを数つ追加するだけで,既存のディープラーニングフレームワークにシームレスに統合することができる。
提案手法を交通速度予測タスク上で評価し,提案手法がモデル水平線を改良するだけでなく,解釈可能な時間相関構造も提供することを発見した。
論文 参考訳(メタデータ) (2022-12-10T22:50:00Z) - Building Normalizing Flows with Stochastic Interpolants [11.22149158986164]
一対の基底分布と対象分布の間の連続時間正規化フローに基づく単純な2次モデルを提案する。
この流れの速度場は、基地と目標の間を有限時間で補間する時間依存分布の確率電流から推定される。
論文 参考訳(メタデータ) (2022-09-30T16:30:31Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。