論文の概要: Distance and Kernel-Based Measures for Global and Local Two-Sample Conditional Distribution Testing
- arxiv url: http://arxiv.org/abs/2210.08149v2
- Date: Thu, 24 Oct 2024 07:01:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:34:11.593446
- Title: Distance and Kernel-Based Measures for Global and Local Two-Sample Conditional Distribution Testing
- Title(参考訳): グローバル・ローカル2サンプル条件分散テストにおける距離とカーネルに基づく対策
- Authors: Jian Yan, Zhuoxi Li, Xianyang Zhang,
- Abstract要約: 本研究の目的は,2サンプル条件分散テストのための距離法とカーネル法に基づく統一的なフレームワークを提供することである。
2つの条件分布の均一性を特徴付ける距離とカーネルに基づく測度を導入する。
我々は,グローバルレベルとローカルレベルにおける2つの条件分布の相違を検出するグローバルテストとローカルテストを開発する。
- 参考スコア(独自算出の注目度): 1.7175846006359674
- License:
- Abstract: Testing the equality of two conditional distributions is crucial in various modern applications, including transfer learning and causal inference. Despite its importance, this fundamental problem has received surprisingly little attention in the literature. This work aims to present a unified framework based on distance and kernel methods for both global and local two-sample conditional distribution testing. To this end, we introduce distance and kernel-based measures that characterize the homogeneity of two conditional distributions. Drawing from the concept of conditional U-statistics, we propose consistent estimators for these measures. Theoretically, we derive the convergence rates and the asymptotic distributions of the estimators under both the null and alternative hypotheses. Utilizing these measures, along with a local bootstrap approach, we develop global and local tests that can detect discrepancies between two conditional distributions at global and local levels, respectively. Our tests demonstrate reliable performance through simulations and real data analyses.
- Abstract(参考訳): 2つの条件分布の等価性をテストすることは、伝達学習や因果推論など、現代の様々な応用において重要である。
その重要性にもかかわらず、この根本的な問題は文学において驚くほどほとんど注目されなかった。
本研究の目的は,グローバルおよびローカルな2サンプル条件分散テストのための距離法とカーネル法に基づく統一的なフレームワークを提供することである。
この目的のために、2つの条件分布の均一性を特徴付ける距離とカーネルに基づく測度を導入する。
条件付きU-統計学の概念から、これらの測度に対する一貫した推定器を提案する。
理論的には、Null仮説とオルタナティブ仮説の両方の下で、推定子の収束率と漸近分布を導出する。
これらの手法と局所的ブートストラップ手法を用いて,グローバルレベルとローカルレベルの2つの条件分布の相違を検出するグローバルテストとローカルテストを開発した。
本試験はシミュレーションと実データ解析により信頼性の高い性能を示す。
関連論文リスト
- General Frameworks for Conditional Two-Sample Testing [3.3317825075368908]
本研究では, 条件付き2サンプル検定の問題点について検討し, 条件付き2サンプル検定の問題点について考察した。
この問題は、ドメイン適応やアルゴリズムフェアネスなど、様々な応用で一般的に発生する。
本稿では,その妥当性と能力について,分布の特定のクラスを暗黙的に,あるいは明示的にターゲットとする2つの一般的なフレームワークを紹介する。
論文 参考訳(メタデータ) (2024-10-22T02:27:32Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
分散シフトは、基礎となるデータ生成プロセスが変化したときに発生し、モデルの性能のずれにつながる。
予測間隔は、その基礎となる分布によって引き起こされる不確実性を特徴づける重要なツールとして機能する。
予測区間を集約し,最小の幅と対象領域を適切にカバーする手法を提案する。
論文 参考訳(メタデータ) (2024-05-16T17:55:42Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Confidence and Uncertainty Assessment for Distributional Random Forests [1.2767281330110625]
分布ランダムフォレスト (DRF) は条件分布を推定するために最近導入されたランダムフォレストである。
条件平均処理効果、条件量子化、条件相関など、幅広いターゲットを推定するために使用できる。
DRFのアルゴリズムを特徴付け、ブートストラップ近似を開発する。
論文 参考訳(メタデータ) (2023-02-11T19:10:01Z) - Learning Against Distributional Uncertainty: On the Trade-off Between
Robustness and Specificity [24.874664446700272]
本稿では,3つのアプローチを統一し,上記の2つの課題に対処する新たな枠組みについて検討する。
提案したモデルのモンテカルロ法に基づく解法(例えば、一貫性と正規性)、非漸近性(例えば、非バイアス性や誤差境界)について検討した。
論文 参考訳(メタデータ) (2023-01-31T11:33:18Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
カーネルベースの不一致測度は、(i)ターゲットPを他の確率測度から分離するか、(ii)Pへの弱収束を制御する必要がある。
本稿では, (i) と (ii) を保証するのに十分な,必要な新しい条件を導出する。
可分距離空間上のMDDに対して、ボヒナー埋め込み可測度を分離するカーネルを特徴づけ、すべての測度を非有界カーネルと分離するための単純な条件を導入する。
論文 参考訳(メタデータ) (2022-09-26T16:41:16Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
我々は,複数の領域からのデータを活用することで,分散シフトを処理するシステムキャリブレーションモデルを開発した。
提案手法は,分布シフト時のキャリブレーションを改善するために,領域内のロバスト性を利用する。
論文 参考訳(メタデータ) (2022-06-06T17:32:12Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Global Distance-distributions Separation for Unsupervised Person
Re-identification [93.39253443415392]
既存の教師なしのReIDアプローチは、距離ベースのマッチング/ランク付けを通じて正のサンプルと負のサンプルを正しく識別するのに失敗することが多い。
本研究では,2つの分布に対する大域的距離分布分離の制約を導入し,大域的視点から正と負のサンプルを明確に分離することを奨励する。
本研究では,本手法がベースラインを大幅に改善し,最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-06-01T07:05:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。