論文の概要: Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI
Revolution
- arxiv url: http://arxiv.org/abs/2210.08340v1
- Date: Sat, 15 Oct 2022 17:18:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 20:39:18.288977
- Title: Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI
Revolution
- Title(参考訳): 次世代人工知能に向けて:NeuroAI革命を触媒する
- Authors: Anthony Zador, Blake Richards, Bence \"Olveczky, Sean Escola, Yoshua
Bengio, Kwabena Boahen, Matthew Botvinick, Dmitri Chklovskii, Anne
Churchland, Claudia Clopath, James DiCarlo, Surya Ganguli, Jeff Hawkins,
Konrad Koerding, Alexei Koulakov, Yann LeCun, Timothy Lillicrap, Adam
Marblestone, Bruno Olshausen, Alexandre Pouget, Cristina Savin, Terrence
Sejnowski, Eero Simoncelli, Sara Solla, David Sussillo, Andreas S. Tolias,
Doris Tsao
- Abstract要約: 神経科学は長年、人工知能(AI)の進歩の重要な要因であった
我々は,AIの進歩を加速するためには,NeuroAIの基本的な研究に投資する必要があることを示唆する。
- 参考スコア(独自算出の注目度): 102.45290975132406
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neuroscience has long been an important driver of progress in artificial
intelligence (AI). We propose that to accelerate progress in AI, we must invest
in fundamental research in NeuroAI.
- Abstract(参考訳): 神経科学は長年、人工知能(AI)の進歩の重要な要因であった。
我々は,AIの進歩を加速するためには,NeuroAIの基礎研究に投資する必要がある。
関連論文リスト
- AI for social science and social science of AI: A Survey [47.5235291525383]
人工知能の最近の進歩は、人工知能の可能性を再考するきっかけとなった。
AIの人間的能力の増大は、社会科学研究にも注目されている。
論文 参考訳(メタデータ) (2024-01-22T10:57:09Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - When Brain-inspired AI Meets AGI [40.96159978312796]
我々は、人工知能の観点から、脳にインスパイアされたAIの包括的概要を提供する。
私たちは、脳にインスパイアされたAIの現在の進歩と、AGIとの広範な関係から始まります。
次に、人間の知性とAIの両面での重要な特徴について述べる。
論文 参考訳(メタデータ) (2023-03-28T12:46:38Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
AIの最近の進歩は、限られた形態のニューロコンフォメーションコンピューティングの使用によってもたらされている。
ニューロコンポジションコンピューティングの新しい形式は、より堅牢で正確で理解しやすいAIシステムを生み出します。
論文 参考訳(メタデータ) (2022-05-02T18:00:10Z) - An Initial Look at Self-Reprogramming Artificial Intelligence [0.0]
我々は、最初の完全自己プログラミングAIシステムを開発し、実験的に検証する。
AIベースのコンピュータコード生成をAI自体に適用することで、ニューラルネットワークのソースコードを継続的に修正し書き換えるアルゴリズムを実装します。
論文 参考訳(メタデータ) (2022-04-30T05:44:34Z) - Challenges and Opportunities of Edge AI for Next-Generation Implantable
BMIs [6.385006149689549]
次世代脳-機械インタフェース(BMI)におけるオンチップAIの新たな可能性について概観する。
我々は,新しい世代のAI強化BMIと高チャネル数BMIを実現するために,アルゴリズムおよびIC設計ソリューションを提案する。
論文 参考訳(メタデータ) (2022-04-04T12:47:07Z) - Making AI 'Smart': Bridging AI and Cognitive Science [0.0]
認知科学の統合により、人工知能の「人工的な」特徴はすぐに「スマート」に置き換えられるかもしれない
これにより、より強力なAIシステムが開発され、同時に人間の脳がどのように機能するかをよりよく理解できるようになる。
このような高度なシステムを開発するためには、まず人間の脳をよりよく理解する必要があるため、AIが人間の文明を乗っ取る可能性は低いと我々は主張する。
論文 参考訳(メタデータ) (2021-12-31T09:30:44Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - To Root Artificial Intelligence Deeply in Basic Science for a New
Generation of AI [1.0152838128195467]
人工知能の野望の1つは、人工知能を基礎科学に深く根ざすことである。
本稿では,今後20年間の人工知能研究の課題について述べる。
論文 参考訳(メタデータ) (2020-09-11T22:38:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。