論文の概要: AI Governance and Ethics Framework for Sustainable AI and Sustainability
- arxiv url: http://arxiv.org/abs/2210.08984v1
- Date: Wed, 28 Sep 2022 22:23:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 11:47:44.732346
- Title: AI Governance and Ethics Framework for Sustainable AI and Sustainability
- Title(参考訳): 持続可能なAIと持続可能性のためのAIガバナンスと倫理フレームワーク
- Authors: Mahendra Samarawickrama
- Abstract要約: 自律兵器、自動化された雇用損失、社会経済的不平等、データやアルゴリズムによる偏見、プライバシー侵害、ディープフェイクなど、人類にとってのAIリスクは数多く発生している。
社会的多様性、公平性、包摂性は、リスクを緩和し、価値を生み出し、社会正義を促進するAIの重要な成功要因と考えられている。
AIによる持続可能な未来に向けての旅では、優先事項としてAI倫理とガバナンスに取り組む必要があります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI is transforming the existing technology landscape at a rapid phase
enabling data-informed decision making and autonomous decision making. Unlike
any other technology, because of the decision-making ability of AI, ethics and
governance became a key concern. There are many emerging AI risks for humanity,
such as autonomous weapons, automation-spurred job loss, socio-economic
inequality, bias caused by data and algorithms, privacy violations and
deepfakes. Social diversity, equity and inclusion are considered key success
factors of AI to mitigate risks, create values and drive social justice.
Sustainability became a broad and complex topic entangled with AI. Many
organizations (government, corporate, not-for-profits, charities and NGOs) have
diversified strategies driving AI for business optimization and
social-and-environmental justice. Partnerships and collaborations become
important more than ever for equity and inclusion of diversified and
distributed people, data and capabilities. Therefore, in our journey towards an
AI-enabled sustainable future, we need to address AI ethics and governance as a
priority. These AI ethics and governance should be underpinned by human ethics.
- Abstract(参考訳): AIは、データインフォームド意思決定と自律的な意思決定を可能にする、既存のテクノロジの展望を、迅速なフェーズで変革している。
他の技術とは異なり、AIの意思決定能力のため、倫理とガバナンスが重要な関心事となった。
自律兵器、自動化された雇用損失、社会経済的不平等、データやアルゴリズムによる偏見、プライバシー侵害、ディープフェイクなど、人類にとってのAIリスクは数多く発生している。
社会的多様性、公平性、包摂性は、リスクを緩和し、価値を作成し、社会正義を促進するAIの重要な成功要因と考えられている。
サステナビリティは、AIに絡み合った広範で複雑なトピックとなった。
多くの組織(政府、法人、非営利団体、慈善団体、NGO)は、ビジネス最適化と社会環境正義のためにAIを駆動する戦略を多様化してきた。
パートナーシップとコラボレーションは、多様性と分散した人々、データ、能力の多様性のために、これまで以上に重要になっています。
したがって、AIが実現可能な持続可能な未来に向けての旅では、優先事項としてAI倫理とガバナンスに取り組む必要があります。
これらのAI倫理とガバナンスは、人間の倫理に根ざすべきである。
関連論文リスト
- Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
この論文は、AIが米国経済のあらゆる分野に与える影響と、ビジネス、政府、アカデミック、そして市民社会にまたがる組織に与える影響を強調している。
我々の議論は、包括的なテーマとして構成された11の基本的な「倫理的原則」を探求する。
これらは透明性、正義、公正、平等、非正当性、責任、説明責任、プライバシー、利益、自由、自律、信頼、尊厳、持続可能性、連帯性を含む。
論文 参考訳(メタデータ) (2023-10-09T14:29:00Z) - Artificial Intelligence for Real Sustainability? -- What is Artificial
Intelligence and Can it Help with the Sustainability Transformation? [0.0]
この記事では、AI技術を簡潔に説明し、分類し、理論化する。
そして、持続可能性に関する議論の観点から、その分析を政治的に文脈化する。
持続可能な社会へ進む上で、AIは小さな役割を担っている、と氏は主張する。
論文 参考訳(メタデータ) (2023-06-15T15:40:00Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
このエッセイは、下流のタスクに活用可能なポリシーデータの構造を学ぶAIの研究の概要を概説する。
これはAIとポリシーの"理解"フェーズを表していると私たちは考えていますが、AIを整合させるために人的価値の重要な源としてポリシーを活用するには、"理解"ポリシーが必要です。
論文 参考訳(メタデータ) (2022-06-25T21:31:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。