論文の概要: The Power of One Clean Qubit in Supervised Machine Learning
- arxiv url: http://arxiv.org/abs/2210.09275v4
- Date: Tue, 7 Nov 2023 18:33:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 22:54:26.929704
- Title: The Power of One Clean Qubit in Supervised Machine Learning
- Title(参考訳): 教師付き機械学習におけるクリーンキュービットのパワー
- Authors: Mahsa Karimi, Ali Javadi-Abhari, Christoph Simon, Roohollah Ghobadi
- Abstract要約: 本稿では,DQC1モデルを用いて,複雑なカーネル関数を推定する効率的な手法を提案する。
本稿では、DQC1モデルを用いたIBMハードウェア上でのバイナリ分類問題の実装と、量子コヒーレンスとハードウェアノイズの影響を解析する。
- 参考スコア(独自算出の注目度): 1.218077316816717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the potential benefits of quantum coherence and quantum
discord in the non-universal quantum computing model called deterministic
quantum computing with one qubit (DQC1) in supervised machine learning. We show
that the DQC1 model can be leveraged to develop an efficient method for
estimating complex kernel functions. We demonstrate a simple relationship
between coherence consumption and the kernel function, a crucial element in
machine learning. The paper presents an implementation of a binary
classification problem on IBM hardware using the DQC1 model and analyzes the
impact of quantum coherence and hardware noise. The advantage of our proposal
lies in its utilization of quantum discord, which is more resilient to noise
than entanglement.
- Abstract(参考訳): 本稿では、教師付き機械学習において、決定論的量子コンピューティング(DQC1)と呼ばれる非ユニバーサル量子コンピューティングモデルにおける量子コヒーレンスと量子不協和の潜在的な利点について検討する。
本稿では,DQC1モデルを用いて,複雑なカーネル関数を推定する効率的な手法を提案する。
機械学習において重要な要素であるコヒーレンス消費とカーネル関数の単純な関係を示す。
本稿では、DQC1モデルを用いたIBMハードウェア上でのバイナリ分類問題の実装と、量子コヒーレンスとハードウェアノイズの影響を解析する。
この提案の利点は、絡み合いよりも雑音に対して弾力性が高い量子ディスコードの利用にある。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Expressivity of deterministic quantum computation with one qubit [3.399289369740637]
量子機械学習モデルとしてパラメータ化DQC1を導入する。
DQC1は普遍計算に基づく量子ニューラルネットワークと同じくらい強力であることを示す。
論文 参考訳(メタデータ) (2024-11-05T02:46:27Z) - Quantum Machine Learning with Application to Progressive Supranuclear Palsy Network Classification [0.0]
進行性核上麻痺(PSP)の診断のための量子機械学習モデルを提案する。
その結果、量子機械学習は古典的なフレームワークよりも顕著に進歩し、性能を上回っていることが示唆された。
特に,IBM量子プラットフォームの量子シミュレータと実チップの両面において,本モデルの有効性を実証した。
論文 参考訳(メタデータ) (2024-07-06T14:16:31Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的なデータを量子回路に繰り返しエンコードするデータ再アップロードが、表現力のある量子機械学習モデルを得るために必要であることが示されている。
我々は、Kerrnon Parametric Hilberts (KPO) を別の有望な量子コンピューティングデバイスとして用いて量子機械学習を提案する。
論文 参考訳(メタデータ) (2023-05-01T07:01:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Improving Quantum Classifier Performance in NISQ Computers by Voting
Strategy from Ensemble Learning [9.257859576573942]
量子アルゴリズムでは、量子デコヒーレンスと量子ゲートのインプレクションによって大きな誤差率が発生する。
本研究では,アンサンブル量子分類器を複数投票で最適化することを提案する。
論文 参考訳(メタデータ) (2022-10-04T14:59:58Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。