論文の概要: Quantum Machine Learning with Application to Progressive Supranuclear Palsy Network Classification
- arxiv url: http://arxiv.org/abs/2407.06226v1
- Date: Sat, 6 Jul 2024 14:16:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:22:56.662217
- Title: Quantum Machine Learning with Application to Progressive Supranuclear Palsy Network Classification
- Title(参考訳): 量子機械学習と進行性核上麻痺ネットワーク分類への応用
- Authors: Papri Saha,
- Abstract要約: 進行性核上麻痺(PSP)の診断のための量子機械学習モデルを提案する。
その結果、量子機械学習は古典的なフレームワークよりも顕著に進歩し、性能を上回っていることが示唆された。
特に,IBM量子プラットフォームの量子シミュレータと実チップの両面において,本モデルの有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning and quantum computing are being progressively explored to shed light on possible computational approaches to deal with hitherto unsolvable problems. Classical methods for machine learning are ubiquitous in pattern recognition, with support vector machines (SVMs) being a prominent technique for network classification. However, there are limitations to the successful resolution of such classification instances when the input feature space becomes large, and the successive evaluation of so-called kernel functions becomes computationally exorbitant. The use of principal component analysis (PCA) substantially minimizes the dimensionality of feature space thereby enabling computational speed-ups of supervised learning: the creation of a classifier. Further, the application of quantum-based learning to the PCA reduced input feature space might offer an exponential speedup with fewer parameters. The present learning model is evaluated on a real clinical application: the diagnosis of Progressive Supranuclear Palsy (PSP) disorder. The results suggest that quantum machine learning has led to noticeable advancement and outperforms classical frameworks. The optimized variational quantum classifier classifies the PSP dataset with 86% accuracy as compared to conventional SVM. The other technique, a quantum kernel estimator, approximates the kernel function on the quantum machine and optimizes a classical SVM. In particular, we have demonstrated the successful application of the present model on both a quantum simulator and real chips of the IBM quantum platform.
- Abstract(参考訳): 機械学習と量子コンピューティングは、解決不可能な問題に対処する可能性のある計算アプローチに光を当てるために、徐々に研究されている。
機械学習の古典的手法は、パターン認識においてユビキタスであり、サポートベクターマシン(SVM)はネットワーク分類の顕著な技術である。
しかし、入力特徴空間が大きくなり、いわゆるカーネル関数の連続的な評価が計算的に外乱となると、そのような分類インスタンスの解決に限界がある。
主成分分析(PCA)の使用は、特徴空間の次元を実質的に最小化し、教師付き学習の計算スピードアップを可能にする。
さらに、PCAの削減された入力特徴空間への量子ベースの学習の適用は、より少ないパラメータで指数的なスピードアップをもたらす可能性がある。
本モデルは, 進行性核上麻痺 (PSP) の診断である。
その結果、量子機械学習は古典的なフレームワークよりも顕著に進歩し、性能を上回っていることが示唆された。
最適化された変分量子分類器は、従来のSVMと比較して86%の精度でPSPデータセットを分類する。
別の手法である量子カーネル推定器は、量子マシン上のカーネル関数を近似し、古典的なSVMを最適化する。
特に,IBM量子プラットフォームの量子シミュレータと実チップの両面において,本モデルの有効性を実証した。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Quantum-Enhanced Support Vector Machine for Large-Scale Stellar
Classification with GPU Acceleration [2.1374208474242815]
我々は,量子コンピューティングとGPUアクセラレーションのパワーを活用して,恒星分類のための革新的な量子強化支援ベクトルマシン(QSVM)アプローチを導入する。
我々のアルゴリズムはK-Nearest Neighbors (KNN) や Logistic Regression (LR) といった従来の手法をはるかに上回っている。
我々の発見は、天文学的な研究における量子機械学習の変革の可能性を強調し、恒星分類の精度と処理速度の両方において、大きな進歩を示している。
論文 参考訳(メタデータ) (2023-11-21T03:40:20Z) - Machine Learning in the Quantum Age: Quantum vs. Classical Support
Vector Machines [0.0]
この研究は、古典的および量子計算パラダイムにおける機械学習アルゴリズムの有効性を判断する努力である。
我々は、Irisデータセット上で量子ハードウェアで動作する古典的なSVMと量子サポートベクトルマシンの分類技術を精査する。
論文 参考訳(メタデータ) (2023-10-17T01:06:59Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
変分量子アルゴリズム(VQA)を用いた量子機械学習は、ノイズのある中間スケール量子(NISQ)時代の実用的なアルゴリズムとして積極的に研究されている。
近年の研究では、古典的なデータを量子回路に繰り返しエンコードするデータ再アップロードが、表現力のある量子機械学習モデルを得るために必要であることが示されている。
我々は、Kerrnon Parametric Hilberts (KPO) を別の有望な量子コンピューティングデバイスとして用いて量子機械学習を提案する。
論文 参考訳(メタデータ) (2023-05-01T07:01:45Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
機械学習と量子コンピューティングは、特定のアルゴリズムのパフォーマンスと振る舞いにパラダイムシフトを引き起こしている。
本稿ではまず,量子的特徴空間の実装に関する数学的直観について述べる。
従来のKNNの分類手法を模倣した雑音変動量子回路KNNを構築した。
論文 参考訳(メタデータ) (2020-02-22T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。