論文の概要: Quantum Mixed-State Self-Attention Network
- arxiv url: http://arxiv.org/abs/2403.02871v2
- Date: Sun, 9 Jun 2024 02:26:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 01:03:43.084053
- Title: Quantum Mixed-State Self-Attention Network
- Title(参考訳): 量子混合状態自己注意ネットワーク
- Authors: Fu Chen, Qinglin Zhao, Li Feng, Chuangtao Chen, Yangbin Lin, Jianhong Lin,
- Abstract要約: 本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
- 参考スコア(独自算出の注目度): 3.1280831148667105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of quantum computing has increasingly highlighted its potential in the realm of machine learning, particularly in the context of natural language processing (NLP) tasks. Quantum machine learning (QML) leverages the unique capabilities of quantum computing to offer novel perspectives and methodologies for complex data processing and pattern recognition challenges. This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms, especially self-attention networks, to enhance the efficiency and effectiveness in handling NLP tasks. QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain, leading to more effective attention weight acquisition. Additionally, we propose an innovative quantum positional encoding scheme, implemented through fixed quantum gates within the quantum circuit, to enhance the model's accuracy. Experimental validation on various datasets demonstrates that QMSAN model outperforms existing quantum and classical models in text classification, achieving significant performance improvements. QMSAN model not only significantly reduces the number of parameters but also exceeds classical self-attention networks in performance, showcasing its strong capability in data representation and information extraction. Furthermore, our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.
- Abstract(参考訳): 量子コンピューティングの急速な進歩は、機械学習分野、特に自然言語処理(NLP)タスクの文脈におけるその可能性を強調している。
量子機械学習(QML)は、量子コンピューティングのユニークな能力を活用し、複雑なデータ処理とパターン認識の課題に対して、新しい視点と方法論を提供する。
本稿では、量子コンピューティングの原理を古典的機械学習アルゴリズム、特に自己注意ネットワークと統合し、NLPタスクの処理効率と効率を向上させる新しい量子混合状態注意ネットワーク(QMSAN)を提案する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定し、より効果的なアテンションウェイト取得を実現する。
さらに,量子回路内の固定量子ゲートによって実装された革新的な量子位置符号化方式を提案し,モデルの精度を向上する。
様々なデータセットに対する実験的検証により、QMSANモデルはテキスト分類において既存の量子モデルや古典モデルよりも優れており、大幅な性能改善が達成されていることが示されている。
QMSANモデルはパラメータの数を著しく削減するだけでなく、パフォーマンスにおいて従来の自己認識ネットワークを超え、データ表現や情報抽出におけるその強力な能力を示している。
さらに, 異なる量子雑音環境下でのモデルのロバスト性について検討し, QMSANは低雑音に対する信頼可能なロバスト性を有することを示した。
関連論文リスト
- Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
ディープフェイク技術は プライバシー セキュリティ 情報整合性に 課題をもたらす
本稿では,ディープフェイク音声の検出を強化するために,量子学習型畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T20:52:10Z) - Quantum Visual Feature Encoding Revisited [8.839645003062456]
本稿では,量子機械学習の初期段階である量子視覚符号化戦略を再考する。
根本原因を調べた結果,既存の量子符号化設計では符号化処理後の視覚的特徴の情報保存が不十分であることが判明した。
我々は、このギャップを最小限に抑えるために、量子情報保存と呼ばれる新しい損失関数を導入し、量子機械学習アルゴリズムの性能を向上した。
論文 参考訳(メタデータ) (2024-05-30T06:15:08Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
本研究では,量子コンピューティングと機械学習(ML)の交わりについて検討する。
小型量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-01T20:55:03Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Error mitigation in variational quantum eigensolvers using tailored
probabilistic machine learning [5.630204194930539]
本稿では,量子計算におけるノイズを軽減するために,ガウス過程回帰(GPR)をアクティブラーニングフレームワーク内に導入する新しい手法を提案する。
我々は,IBMのオープンソース量子コンピューティングフレームワークであるQiskitを用いて,2サイトアンダーソン不純物モデルと8サイトハイゼンベルクモデルに対する提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-11-16T22:29:43Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。