論文の概要: Generative models uncertainty estimation
- arxiv url: http://arxiv.org/abs/2210.09767v1
- Date: Tue, 18 Oct 2022 11:30:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 16:16:56.992498
- Title: Generative models uncertainty estimation
- Title(参考訳): 生成モデルの不確実性推定
- Authors: Lucio Anderlini, Constantine Chimpoesh, Nikita Kazeev and Agata
Shishigina
- Abstract要約: 本稿では,トレーニングフェーズ空間領域内外における生成モデルの不確実性を推定する3つの手法を提案する。
また,LHCb RICH高速シミュレーションにおける提案手法の検証を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years fully-parametric fast simulation methods based on generative
models have been proposed for a variety of high-energy physics detectors. By
their nature, the quality of data-driven models degrades in the regions of the
phase space where the data are sparse. Since machine-learning models are hard
to analyse from the physical principles, the commonly used testing procedures
are performed in a data-driven way and can't be reliably used in such regions.
In our work we propose three methods to estimate the uncertainty of generative
models inside and outside of the training phase space region, along with
data-driven calibration techniques. A test of the proposed methods on the LHCb
RICH fast simulation is also presented.
- Abstract(参考訳): 近年,多種多様な高エネルギー物理検出器に対して生成モデルに基づく完全パラメトリック高速シミュレーション手法が提案されている。
その性質上、データ駆動モデルの品質は、データが不足している位相空間の領域で劣化する。
機械学習モデルは物理原理から分析が難しいため、一般的に使用されるテスト手順はデータ駆動で行われ、そのような領域では確実に使用できない。
本研究では,データ駆動キャリブレーション手法とともに,トレーニングフェーズ空間領域内外における生成モデルの不確かさを推定する3つの手法を提案する。
また,LHCb RICH高速シミュレーションにおける提案手法の検証を行った。
関連論文リスト
- Generative Geostatistical Modeling from Incomplete Well and Imaged Seismic Observations with Diffusion Models [0.24578723416255752]
拡散生成モデルを用いて地下速度モデルを合成する新しい手法を提案する。
本手法は, 完全標本化を必要とせず, 不完全な観測と地震観測を生かし, 高忠実度速度試料を作製する。
論文 参考訳(メタデータ) (2024-05-16T20:30:43Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
主観的逐次的ニューラルネットワーク類似度推定はシミュレーションに基づく推論の新しい手法である。
データを低次元空間に埋め込むことで、SSNLは高次元データセットに適用する際の従来の可能性ベースの手法が抱えるいくつかの問題を解く。
論文 参考訳(メタデータ) (2023-08-02T10:02:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Uncertainty estimation for time series forecasting via Gaussian process
regression surrogates [0.8733767481819791]
代用ガウス過程モデルに基づく不確実性推定法を提案する。
提案手法は,任意のベースモデルに対して,個別のサロゲートが生成した正確な不確実性推定を行うことができる。
他の手法と比較して、見積もりは1つの追加モデルだけで計算的に有効である。
論文 参考訳(メタデータ) (2023-02-06T14:52:56Z) - Learning new physics efficiently with nonparametric methods [11.970219534238444]
モデルに依存しない新しい物理探索のための機械学習手法を提案する。
対応するアルゴリズムは、最近のカーネルメソッドの大規模実装によって実現されている。
トレーニング時間や計算資源の観点から、ニューラルネットワークの実装と比較して、我々のアプローチは劇的なアドバンテージがあることが示される。
論文 参考訳(メタデータ) (2022-04-05T16:17:59Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Real-Time Model Calibration with Deep Reinforcement Learning [4.707841918805165]
本稿では,強化学習に基づくモデルパラメータ推定のための新しいフレームワークを提案する。
提案手法を2つのモデルベース診断試験ケースで実証し, 評価した。
論文 参考訳(メタデータ) (2020-06-07T00:11:42Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。