Better Few-Shot Relation Extraction with Label Prompt Dropout
- URL: http://arxiv.org/abs/2210.13733v1
- Date: Tue, 25 Oct 2022 03:03:09 GMT
- Title: Better Few-Shot Relation Extraction with Label Prompt Dropout
- Authors: Peiyuan Zhang, Wei Lu
- Abstract summary: We present a novel approach called label prompt dropout, which randomly removes label descriptions in the learning process.
Our experiments show that our approach is able to lead to improved class representations, yielding significantly better results on the few-shot relation extraction task.
- Score: 7.939146925759088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot relation extraction aims to learn to identify the relation between
two entities based on very limited training examples. Recent efforts found that
textual labels (i.e., relation names and relation descriptions) could be
extremely useful for learning class representations, which will benefit the
few-shot learning task. However, what is the best way to leverage such label
information in the learning process is an important research question. Existing
works largely assume such textual labels are always present during both
learning and prediction. In this work, we argue that such approaches may not
always lead to optimal results. Instead, we present a novel approach called
label prompt dropout, which randomly removes label descriptions in the learning
process. Our experiments show that our approach is able to lead to improved
class representations, yielding significantly better results on the few-shot
relation extraction task.
Related papers
- Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Multi-Label Knowledge Distillation [86.03990467785312]
We propose a novel multi-label knowledge distillation method.
On one hand, it exploits the informative semantic knowledge from the logits by dividing the multi-label learning problem into a set of binary classification problems.
On the other hand, it enhances the distinctiveness of the learned feature representations by leveraging the structural information of label-wise embeddings.
arXiv Detail & Related papers (2023-08-12T03:19:08Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - New Intent Discovery with Pre-training and Contrastive Learning [21.25371293641141]
New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes.
Existing approaches typically rely on a large amount of labeled utterances.
We propose a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering.
arXiv Detail & Related papers (2022-05-25T17:07:25Z) - Active Learning with Label Comparisons [41.82179028046654]
We show that finding the best of $k$ labels can be done with $k-1$ active queries.
Key element in our analysis is the "label neighborhood graph" of the true distribution.
arXiv Detail & Related papers (2022-04-10T12:13:46Z) - Exploring Task Difficulty for Few-Shot Relation Extraction [22.585574542329677]
Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances.
We introduce a novel approach based on contrastive learning that learns better representations by exploiting relation label information.
arXiv Detail & Related papers (2021-09-12T09:40:33Z) - MapRE: An Effective Semantic Mapping Approach for Low-resource Relation
Extraction [11.821464352959454]
We propose a framework considering both label-agnostic and label-aware semantic mapping information for low resource relation extraction.
We show that incorporating the above two types of mapping information in both pretraining and fine-tuning can significantly improve the model performance.
arXiv Detail & Related papers (2021-09-09T09:02:23Z) - Is Label Smoothing Truly Incompatible with Knowledge Distillation: An
Empirical Study [59.95267695402516]
This work aims to empirically clarify that label smoothing is incompatible with knowledge distillation.
We provide a novel connection on how label smoothing affects distributions of semantically similar and dissimilar classes.
We study its one-sidedness and imperfection of the incompatibility view through massive analyses, visualizations and comprehensive experiments.
arXiv Detail & Related papers (2021-04-01T17:59:12Z) - R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic
Matching [58.72111690643359]
We propose a Relation of Relation Learning Network (R2-Net) for sentence semantic matching.
We first employ BERT to encode the input sentences from a global perspective.
Then a CNN-based encoder is designed to capture keywords and phrase information from a local perspective.
To fully leverage labels for better relation information extraction, we introduce a self-supervised relation of relation classification task.
arXiv Detail & Related papers (2020-12-16T13:11:30Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
arXiv Detail & Related papers (2020-10-06T05:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.