論文の概要: ThreatCluster: Threat Clustering for Information Overload Reduction in Computer Emergency Response Teams
- arxiv url: http://arxiv.org/abs/2210.14067v2
- Date: Fri, 15 Mar 2024 15:46:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-03-19 08:01:36.019349
- Title: ThreatCluster: Threat Clustering for Information Overload Reduction in Computer Emergency Response Teams
- Title(参考訳): ThreatCluster: コンピュータ緊急対応チームにおける情報負荷低減のための脅威クラスタリング
- Authors: Philipp Kuehn, Dilara Nadermahmoodi, Moritz Kerk, Christian Reuter,
- Abstract要約: 情報ソースの脅威と多様性はCERTにとって課題となる。
新たな脅威に対応するため、CERTはタイムリーで包括的な方法で情報を集める必要がある。
本稿では,CERTにおける情報過負荷を低減する方法について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-increasing number of threats and the existing diversity of information sources pose challenges for Computer Emergency Response Teams (CERTs). To respond to emerging threats, CERTs must gather information in a timely and comprehensive manner. But the volume of sources and information leads to information overload. This paper contributes to the question of how to reduce information overload for CERTs. We propose clustering incoming information as scanning this information is one of the most tiresome, but necessary, manual steps. Based on current studies, we establish conditions for such a framework. Different types of evaluation metrics are used and selected in relation to the framework conditions. Furthermore, different document embeddings and distance measures are evaluated and interpreted in combination with clustering methods. We use three different corpora for the evaluation, a novel ground truth corpus based on threat reports, one security bug report (SBR) corpus, and one with news articles. Our work shows, it is possible to reduce the information overload by up to 84.8% with homogeneous clusters. A runtime analysis of the clustering methods strengthens the decision of selected clustering methods. The source code and dataset will be made publicly available after acceptance.
- Abstract(参考訳): 脅威の増加と既存の情報ソースの多様性は、コンピュータ緊急対応チーム(CERT)の課題を引き起こしている。
新たな脅威に対応するため、CERTはタイムリーで包括的な方法で情報を集める必要がある。
しかし、情報源や情報の量は、情報の過負荷につながる。
本稿では,CERTにおける情報過負荷を低減する方法について考察する。
我々は、この情報をスキャンするときに、最も面倒だが必要な手動ステップの1つとして、入ってくる情報をクラスタリングすることを提案する。
現状の研究では,このような枠組みの条件を定めている。
異なるタイプの評価指標が、フレームワークの条件に応じて使用され、選択される。
さらに、異なる文書埋め込みと距離測定をクラスタリング法と組み合わせて評価し、解釈する。
評価には3つの異なるコーパス,脅威レポートに基づく新たな真実コーパス,セキュリティバグレポート(SBR)コーパス,ニュース記事を含む。
我々の研究は、同種クラスタで最大84.8%の情報オーバーロードを削減可能であることを示している。
クラスタリング手法のランタイム解析により,選択したクラスタリング手法の決定が強化される。
ソースコードとデータセットは、受理後に公開される。
関連論文リスト
- The importance of the clustering model to detect new types of intrusion in data traffic [0.0]
提案手法では,クラスタリング手法としてK-meansアルゴリズムを用いる。
データはKali Linux環境、cicflowmeterトラフィック、Putty Softwareツールを利用して収集された。
モデルは攻撃を数え、それぞれに番号を割り当てた。
論文 参考訳(メタデータ) (2024-11-21T19:40:31Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - Intelligent Multi-Document Summarisation for Extracting Insights on Racial Inequalities from Maternity Incident Investigation Reports [0.8609957371651683]
医療では、毎年何千もの安全事故が発生するが、これらの事故から学ぶことは効果的に集約されない。
本稿では,安全事故報告の集約と分析を容易にするためのフレームワークであるI-SIRch:CSを提案する。
このフレームワークは、セーフティ・インテリジェンス・リサーチ(SIRch)の分類学を用いた概念アノテーションと、クラスタリング、要約、分析機能を統合する。
論文 参考訳(メタデータ) (2024-07-11T09:11:20Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
フェデレートラーニング(FL)は、アグリゲーションサーバにのみローカルモデルの更新を通信することで、分散デバイス間のモデルトレーニングを可能にする。
FLはモデル更新送信中に推論攻撃に弱いままである。
本稿では、重みクラスタリングによるモデル圧縮と、最近の分散型FEとプライバシ強化データエンコーディングを統合する新しい方法であるEncClusterを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:16:50Z) - GraphWeaver: Billion-Scale Cybersecurity Incident Correlation [2.2572772235310934]
GraphWeaverは、従来のインシデント相関プロセスを、データ最適化されたジオ分散グラフベースのアプローチに移行する、業界規模のフレームワークです。
GraphWeaverはMicrosoft Defender XDR製品に統合され、世界中でデプロイされる。
この統合は高い相関精度を維持しただけでなく、従来の相関ストレージの要求を7.4倍削減した。
論文 参考訳(メタデータ) (2024-06-03T23:28:05Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
本稿では,セキュアかつ検証可能なデータコラボレーションのための新しい高効率ソリューションRiseFLを提案する。
まず,ZKP生成と検証のコストを大幅に削減する確率論的整合性検査法を提案する。
第3に,ビザンチンのロバスト性を満たすハイブリッドなコミットメントスキームを設計し,性能を向上する。
論文 参考訳(メタデータ) (2023-11-26T14:19:46Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles [136.84278943588652]
同一イベントを含む複数のニュース記事において遭遇する多様な情報を要約する新しい課題を提案する。
この作業を容易にするために、多様な情報を特定するためのデータ収集スキーマの概要と、DiverseSummというデータセットをキュレートした。
データセットには245のニュース記事が含まれており、各ストーリーは10のニュース記事からなり、人間公認の参照と組み合わせられる。
論文 参考訳(メタデータ) (2023-09-17T20:28:17Z) - ThreatCrawl: A BERT-based Focused Crawler for the Cybersecurity Domain [0.0]
ThreatCrawlと呼ばれる新しい集中クローラが提案されている。
BiBERTベースのモデルを使用して文書を分類し、クローリングパスを動的に適応する。
収穫率は最大52%で、私たちの知る限りでは、現在の最先端技術よりも優れています。
論文 参考訳(メタデータ) (2023-04-24T09:53:33Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - MQAG: Multiple-choice Question Answering and Generation for Assessing
Information Consistency in Summarization [55.60306377044225]
最先端の要約システムは高度に流動的な要約を生成することができる。
しかし、これらの要約には、情報源に存在しない事実上の矛盾や情報が含まれている可能性がある。
本稿では,ソース情報と要約情報を直接比較する,標準的な情報理論に基づく代替手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T23:08:25Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - A Proposition-Level Clustering Approach for Multi-Document Summarization [82.4616498914049]
クラスタリングアプローチを再検討し、より正確な情報アライメントの提案をグループ化します。
提案手法は,有意な命題を検出し,それらをパラフラスティックなクラスタに分類し,その命題を融合して各クラスタの代表文を生成する。
DUC 2004 とTAC 2011 データセットでは,従来の最先端 MDS 法よりも要約法が優れている。
論文 参考訳(メタデータ) (2021-12-16T10:34:22Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - A Quantitative Metric for Privacy Leakage in Federated Learning [22.968763654455298]
クライアントが勾配における情報漏洩の潜在的なリスクを評価するために、相互情報に基づく定量的指標を提案します。
情報漏洩のリスクは、タスクモデルの状態だけでなく、固有のデータ分布に関連していることが証明されています。
論文 参考訳(メタデータ) (2021-02-24T02:48:35Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。