論文の概要: Reducing Information Overload: Because Even Security Experts Need to Blink
- arxiv url: http://arxiv.org/abs/2210.14067v5
- Date: Wed, 05 Feb 2025 19:00:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:29:14.352938
- Title: Reducing Information Overload: Because Even Security Experts Need to Blink
- Title(参考訳): 情報過負荷を減らす - セキュリティ専門家でさえリンクする必要があるからだ
- Authors: Philipp Kuehn, Markus Bayer, Tobias Frey, Moritz Kerk, Christian Reuter,
- Abstract要約: コンピュータ緊急対応チーム(CERTs)は、セキュリティ関連の情報量の増加を処理しようとする課題に直面している。
この研究は、自動情報統合のための最適なアプローチを特定するために、5つのセキュリティ関連データセットにクラスタリングアルゴリズムと埋め込みモデルを組み合わせた196の組合せを評価する。
クラスタリングにより、セマンティックコヒーレンスを維持しながら、情報処理の要求を90%以上削減できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Computer Emergency Response Teams (CERTs) face increasing challenges processing the growing volume of security-related information. Daily manual analysis of threat reports, security advisories, and vulnerability announcements leads to information overload, contributing to burnout and attrition among security professionals. This work evaluates 196 combinations of clustering algorithms and embedding models across five security-related datasets to identify optimal approaches for automated information consolidation. We demonstrate that clustering can reduce information processing requirements by over 90% while maintaining semantic coherence, with deep clustering achieving homogeneity of 0.88 for security bug report (SBR) and partition-based clustering reaching 0.51 for advisory data. Our solution requires minimal configuration, preserves all data points, and processes new information within five minutes on consumer hardware. The findings suggest that clustering approaches can significantly enhance CERT operational efficiency, potentially saving over 3.750 work hours annually per analyst while maintaining analytical integrity. However, complex threat reports require careful parameter tuning to achieve acceptable performance, indicating areas for future optimization. The code is made available at https://github.com/PEASEC/reducing-information-overload.
- Abstract(参考訳): コンピュータ緊急対応チーム(CERTs)は、セキュリティ関連の情報量の増加を処理しようとする課題に直面している。
脅威レポート、セキュリティアドバイザリ、脆弱性の発表に関する日々のマニュアル分析は、情報過負荷をもたらし、セキュリティ専門家の燃え尽きと誘惑に寄与する。
この研究は、自動情報統合のための最適なアプローチを特定するために、5つのセキュリティ関連データセットにクラスタリングアルゴリズムと埋め込みモデルを組み合わせた196の組合せを評価する。
クラスタリングはセマンティックコヒーレンスを維持しながら情報処理の要求を90%以上削減し,セキュリティバグレポート(SBR)では0.88,アドバイザリデータでは0.51に達した。
私たちのソリューションでは、最小限の設定が必要で、すべてのデータポイントを保持し、コンシューマハードウェア上で5分以内に新しい情報を処理します。
この結果から,クラスタリングアプローチはCERTの運用効率を大幅に向上させ,分析的整合性を維持しつつ,アナリスト1人当たりの作業時間を3.750時間以上削減できる可能性が示唆された。
しかし、複雑な脅威レポートでは、許容可能な性能を達成するためにパラメータチューニングを慎重に行う必要があり、将来の最適化の領域を示す。
コードはhttps://github.com/PEASEC/reducing-information-overloadで公開されている。
関連論文リスト
- Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
エンコーダ・デコーダをベースとした手法であるHybrid-Segmentorを導入する。
これにより、モデルは、様々な種類の形状、表面、き裂の大きさを区別する一般化能力を向上させることができる。
提案モデルは,5つの測定基準(精度0.971,精度0.804,リコール0.744,F1スコア0.770,IoUスコア0.630)で既存ベンチマークモデルより優れ,最先端の状態を達成している。
論文 参考訳(メタデータ) (2024-09-04T16:47:16Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
フェデレートラーニング(FL)は、アグリゲーションサーバにのみローカルモデルの更新を通信することで、分散デバイス間のモデルトレーニングを可能にする。
FLはモデル更新送信中に推論攻撃に弱いままである。
本稿では、重みクラスタリングによるモデル圧縮と、最近の分散型FEとプライバシ強化データエンコーディングを統合する新しい方法であるEncClusterを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:16:50Z) - GraphWeaver: Billion-Scale Cybersecurity Incident Correlation [2.2572772235310934]
GraphWeaverは、従来のインシデント相関プロセスを、データ最適化されたジオ分散グラフベースのアプローチに移行する、業界規模のフレームワークです。
GraphWeaverはMicrosoft Defender XDR製品に統合され、世界中でデプロイされる。
この統合は高い相関精度を維持しただけでなく、従来の相関ストレージの要求を7.4倍削減した。
論文 参考訳(メタデータ) (2024-06-03T23:28:05Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
本稿では,セキュアかつ検証可能なデータコラボレーションのための新しい高効率ソリューションRiseFLを提案する。
まず,ZKP生成と検証のコストを大幅に削減する確率論的整合性検査法を提案する。
第3に,ビザンチンのロバスト性を満たすハイブリッドなコミットメントスキームを設計し,性能を向上する。
論文 参考訳(メタデータ) (2023-11-26T14:19:46Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。