論文の概要: Multiresolution Signal Processing of Financial Market Objects
- arxiv url: http://arxiv.org/abs/2210.15934v1
- Date: Fri, 28 Oct 2022 06:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 17:44:11.125021
- Title: Multiresolution Signal Processing of Financial Market Objects
- Title(参考訳): 金融市場オブジェクトのマルチレゾリューション信号処理
- Authors: Ioana Boier
- Abstract要約: 非線形アソシエーションをキャプチャするニューラルネットワークと、マルチスケールの分解アプローチを組み合わせることで、金融市場データサブストラクチャの理解を深める。
幅広い応用の文脈において、我々のアプローチを説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial markets are among the most complex entities in our environment, yet
mainstream quantitative models operate at predetermined scale, rely on linear
correlation measures, and struggle to recognize non-linear or causal
structures. In this paper, we combine neural networks known to capture
non-linear associations with a multiscale decomposition approach to facilitate
a better understanding of financial market data substructures. Quantization
keeps our decompositions calibrated to market at every scale. We illustrate our
approach in the context of a wide spectrum of applications.
- Abstract(参考訳): 金融市場は我々の環境において最も複雑な存在であるが、主流の量的モデルは所定の規模で運用され、線形相関尺度に依存し、非線形構造や因果構造を認識するのに苦労している。
本稿では,非線形関係を捉えたニューラルネットとマルチスケール分解手法を組み合わせることで,金融市場データサブ構造をより理解しやすくする。
量子化は、分解をあらゆる規模で市場に調整し続けます。
我々は、幅広いアプリケーションのコンテキストにおいて、我々のアプローチを説明します。
関連論文リスト
- A Survey of Financial AI: Architectures, Advances and Open Challenges [0.6798775532273751]
金融AIは金融市場の予測、ポートフォリオ最適化、自動取引に対する洗練されたアプローチを強化する。
この調査は3つの主要な側面にわたるこれらの展開を体系的に分析する。
論文 参考訳(メタデータ) (2024-11-01T04:16:00Z) - Safety vs. Performance: How Multi-Objective Learning Reduces Barriers to Market Entry [86.79268605140251]
我々は、大規模言語モデルのための新興市場への参入に必要となる障壁が存在するかどうかを調査する。
要求されるデータポイント数は、既存の企業のデータセットサイズよりも大幅に小さくなることを示します。
以上の結果から,多目的的考察が参入障壁を根本的に低減することを示す。
論文 参考訳(メタデータ) (2024-09-05T17:45:01Z) - Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study [15.379345372327375]
本稿では,オーストラリア国債取引における不透明な二国間市場を表現することを目的とする。
交渉された取引と限られた数のエージェントによって特徴づけられる二国間市場の特異性は、エージェントベースのモデリングと量的金融に価値ある洞察をもたらす。
市場構造における市場剛性の影響を考察し,市場設計における安定性の要素について考察する。
論文 参考訳(メタデータ) (2024-05-05T08:42:20Z) - Refined Mechanism Design for Approximately Structured Priors via Active
Regression [50.71772232237571]
我々は、大量の商品を戦略的入札者に販売する収益を最大化する販売業者の問題を考える。
この設定の最適かつほぼ最適のメカニズムは、特徴付けや計算が難しいことで有名である。
論文 参考訳(メタデータ) (2023-10-11T20:34:17Z) - A Unifying Perspective on Multi-Calibration: Game Dynamics for
Multi-Objective Learning [63.20009081099896]
マルチキャリブレーション予測器の設計と解析のための統一フレームワークを提供する。
ゲームダイナミクスとの接続を利用して,多様なマルチ校正学習問題に対する最先端の保証を実現する。
論文 参考訳(メタデータ) (2023-02-21T18:24:17Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Cooperative Policy Learning with Pre-trained Heterogeneous Observation
Representations [51.8796674904734]
事前訓練された異種観察表現を用いた新たな協調学習フレームワークを提案する。
エンコーダ-デコーダに基づくグラフアテンションを用いて、複雑な相互作用と異種表現を学習する。
論文 参考訳(メタデータ) (2020-12-24T04:52:29Z) - DoubleEnsemble: A New Ensemble Method Based on Sample Reweighting and
Feature Selection for Financial Data Analysis [22.035287788330663]
学習軌道に基づくサンプル再重み付けとシャッフルに基づく特徴選択を利用したアンサンブルフレームワークであるDoubleEnsembleを提案する。
我々のモデルは、複雑なパターンを抽出できる幅広い基盤モデルに適用でき、金融市場の予測に過度に適合し、不安定な問題を緩和できる。
論文 参考訳(メタデータ) (2020-10-03T02:57:10Z) - Navigating the Dynamics of Financial Embeddings over Time [0.0]
スケーラブルな動的環境におけるグラフ表現学習の応用を提案する。
我々は、現実の洞察を抽出するために、潜航軌道の厳密な定性的分析を行う。
論文 参考訳(メタデータ) (2020-07-01T16:27:31Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。