論文の概要: A Survey of Financial AI: Architectures, Advances and Open Challenges
- arxiv url: http://arxiv.org/abs/2411.12747v1
- Date: Fri, 01 Nov 2024 04:16:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 05:33:15.114677
- Title: A Survey of Financial AI: Architectures, Advances and Open Challenges
- Title(参考訳): 金融AIに関する調査: アーキテクチャ、進歩、オープンチャレンジ
- Authors: Junhua Liu,
- Abstract要約: 金融AIは金融市場の予測、ポートフォリオ最適化、自動取引に対する洗練されたアプローチを強化する。
この調査は3つの主要な側面にわたるこれらの展開を体系的に分析する。
- 参考スコア(独自算出の注目度): 0.6798775532273751
- License:
- Abstract: Financial AI empowers sophisticated approaches to financial market forecasting, portfolio optimization, and automated trading. This survey provides a systematic analysis of these developments across three primary dimensions: predictive models that capture complex market dynamics, decision-making frameworks that optimize trading and investment strategies, and knowledge augmentation systems that leverage unstructured financial information. We examine significant innovations including foundation models for financial time series, graph-based architectures for market relationship modeling, and hierarchical frameworks for portfolio optimization. Analysis reveals crucial trade-offs between model sophistication and practical constraints, particularly in high-frequency trading applications. We identify critical gaps and open challenges between theoretical advances and industrial implementation, outlining open challenges and opportunities for improving both model performance and practical applicability.
- Abstract(参考訳): 金融AIは金融市場の予測、ポートフォリオ最適化、自動取引に対する洗練されたアプローチを強化する。
この調査は、複雑な市場のダイナミクスを捉える予測モデル、取引と投資戦略を最適化する意思決定フレームワーク、非構造的な金融情報を活用する知識強化システムという3つの主要な側面にわたるこれらの発展の体系的な分析を提供する。
金融時系列の基礎モデル、市場関係モデリングのためのグラフベースのアーキテクチャ、ポートフォリオ最適化のための階層的フレームワークなど、重要なイノベーションについて検討する。
分析は、特に高周波取引アプリケーションにおいて、モデル高度化と実践的制約の間の重要なトレードオフを明らかにしている。
モデル性能と実用性の両方を改善するためのオープンな課題と機会を概説し、理論的な進歩と工業的実践の間の重要なギャップとオープンな課題を特定します。
関連論文リスト
- Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
ポートフォリオ管理とアルファマイニングにおける定量株式投資のための新しい枠組みを提案する。
本稿では,大規模言語モデル(LLM)がマルチモーダル財務データからアルファ因子を抽出する枠組みを提案する。
中国株式市場の実験は、この枠組みが最先端のベースラインを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2024-09-10T07:42:28Z) - Large Investment Model [7.712869313074975]
大規模投資モデル(Large Investment Model, LIM)は、大規模における性能と効率性の両方を高めるために設計された新しい研究パラダイムである。
LIMはエンド・ツー・エンドの学習とユニバーサル・モデリングを採用し、多様な財務データから包括的な信号パターンを自律的に学習できる上流基盤モデルを作成する。
論文 参考訳(メタデータ) (2024-08-12T05:15:13Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - Long Short-Term Memory Pattern Recognition in Currency Trading [0.0]
ワイコフフェイズ(Wyckoff Phases)は、リチャード・D・ワイコフが20世紀初頭に考案したフレームワークである。
本研究は、取引範囲と二次試験の段階を探求し、市場ダイナミクスを理解することの重要性を解明する。
この研究は、これらの相の複雑さを解き明かすことで、市場構造を通して流動性を生み出すことに光を当てている。
この研究は、金融分析とトレーディング戦略におけるAI駆動アプローチの変革の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-23T12:59:49Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Recent Advances in Reinforcement Learning in Finance [3.0079490585515343]
データ量の増加による金融業界の急激な変化は、データ処理やデータ分析に関する技術に革命をもたらした。
強化学習(RL)による新たな発展は、大量の財務データをフル活用することができる。
論文 参考訳(メタデータ) (2021-12-08T19:55:26Z) - The Adaptive Multi-Factor Model and the Financial Market [0.0]
Exchange-Traded Fundsのようなコンポーネントの導入や、アルゴリズムトレーディングのような高度な技術の普及により、データのブームがもたらされる。
従来の統計手法は、常に高次元、高相関、時間変化による財務データの直感に悩まされる。
提案手法により、より解釈可能なモデル、より明確な説明、より良い予測が可能である。
論文 参考訳(メタデータ) (2021-07-30T03:05:03Z) - Estimating Fund-Raising Performance for Start-up Projects from a Market
Graph Perspective [58.353799280109904]
市場環境を利用して未公開プロジェクトの資金調達実績を予測するためのグラフベースの市場環境(GME)モデルを提案する。
具体的には、市場環境を利用して未公開プロジェクトの資金調達実績を予測するグラフベースの市場環境(GME)モデルを提案する。
論文 参考訳(メタデータ) (2021-05-27T02:39:30Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。