論文の概要: Graph Fuzzy System: Concepts, Models and Algorithms
- arxiv url: http://arxiv.org/abs/2210.16730v1
- Date: Sun, 30 Oct 2022 02:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 15:41:44.341070
- Title: Graph Fuzzy System: Concepts, Models and Algorithms
- Title(参考訳): グラフファジィシステム:概念,モデル,アルゴリズム
- Authors: Fuping Hu, Zhaohong Deng, Zhenping Xie, Kup-Sze Choi, Shitong Wang
- Abstract要約: ファジィシステム(FS)は、パターン認識、インテリジェント制御、データマイニング、バイオインフォマティクスなど、様々な分野で広く応用されている。
従来のアプリケーションシナリオでは、FSはユークリッド空間データのモデル化に主に適用されており、ソーシャルネットワークや交通経路マップのような自然界における非ユークリッド構造のグラフデータを扱うには使用できない。
本稿では,グラフファジィシステム(GFS)と呼ばれるグラフデータモデリングのための新しいタイプのFSを提案する。
- 参考スコア(独自算出の注目度): 21.52367004467259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fuzzy systems (FSs) have enjoyed wide applications in various fields,
including pattern recognition, intelligent control, data mining and
bioinformatics, which is attributed to the strong interpretation and learning
ability. In traditional application scenarios, FSs are mainly applied to model
Euclidean space data and cannot be used to handle graph data of non-Euclidean
structure in nature, such as social networks and traffic route maps. Therefore,
development of FS modeling method that is suitable for graph data and can
retain the advantages of traditional FSs is an important research. To meet this
challenge, a new type of FS for graph data modeling called Graph Fuzzy System
(GFS) is proposed in this paper, where the concepts, modeling framework and
construction algorithms are systematically developed. First, GFS related
concepts, including graph fuzzy rule base, graph fuzzy sets and graph
consequent processing unit (GCPU), are defined. A GFS modeling framework is
then constructed and the antecedents and consequents of the GFS are presented
and analyzed. Finally, a learning framework of GFS is proposed, in which a
kernel K-prototype graph clustering (K2PGC) is proposed to develop the
construction algorithm for the GFS antecedent generation, and then based on
graph neural network (GNNs), consequent parameters learning algorithm is
proposed for GFS. Specifically, three different versions of the GFS
implementation algorithm are developed for comprehensive evaluations with
experiments on various benchmark graph classification datasets. The results
demonstrate that the proposed GFS inherits the advantages of both existing
mainstream GNNs methods and conventional FSs methods while achieving better
performance than the counterparts.
- Abstract(参考訳): ファジィシステム(fss)は、パターン認識、インテリジェント制御、データマイニング、バイオインフォマティクスなど、さまざまな分野で幅広い応用を享受してきた。
従来のアプリケーションシナリオでは、FSはユークリッド空間データのモデル化に主に適用されており、ソーシャルネットワークや交通経路マップのような非ユークリッド構造のグラフデータを扱うには使用できない。
したがって、グラフデータに適した従来のFSの利点を維持できるFSモデリング手法の開発は重要な研究である。
この課題に対処するため,グラフファジィシステム(GFS)と呼ばれるグラフデータモデリングのための新しいタイプのFSを提案する。
まず、グラフファジィルールベース、グラフファジィセット、グラフ連続処理ユニット(GCPU)など、GFS関連の概念を定義する。
そして、GFSモデリングフレームワークを構築し、GFSの先行者および後続者を提示、分析する。
最後に、GFSの学習フレームワークとして、カーネルK-プロトタイプグラフクラスタリング(K2PGC)が提案され、GFSの先行生成のための構築アルゴリズムが開発され、グラフニューラルネットワーク(GNN)に基づいて、連続したパラメータ学習アルゴリズムが提案される。
具体的には、GFS実装アルゴリズムの3つの異なるバージョンを開発し、様々なベンチマークグラフ分類データセットの実験を行った。
その結果,提案したGFSは,既存の主流GNN法と従来のFSs法の両方の利点を継承し,優れた性能を実現していることがわかった。
関連論文リスト
- DiRW: Path-Aware Digraph Learning for Heterophily [23.498557237805414]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのための強力な表現学習ツールとして登場した。
我々は,プラグイン・アンド・プレイ戦略や革新的なニューラルアーキテクチャとみなすことができるDirected Random Walk (DiRW)を提案する。
DiRWには、歩行確率、長さ、および数の観点から最適化された方向対応パスサンプリング器が組み込まれている。
論文 参考訳(メタデータ) (2024-10-14T09:26:56Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - GTAGCN: Generalized Topology Adaptive Graph Convolutional Networks [5.166599023304314]
一般化集約ネットワークとトポロジ適応グラフ畳み込みネットワークという2つの確立された手法に基づくハイブリッドアプローチを導出する。
結果は、文献の結果と同等であり、グラフ構造が探索されていないシーケンスデータとして手書きのストロークの方が優れている。
論文 参考訳(メタデータ) (2024-03-22T10:02:13Z) - Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem [27.904195034688257]
既存の学習に基づくジョブショップスケジューリング問題の解法(JSSP)は、通常、非方向性グラフに適した既製のGNNモデルを使用し、解離グラフ(DG)のリッチで有意義な位相構造を無視する。
本稿では,JSSP を解決するための DG を局所検索フレームワークに組み込むためのトポロジ対応双方向グラフアテンションネットワーク (TBGAT) を提案する。
論文 参考訳(メタデータ) (2024-02-27T15:33:20Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
テンポラルグラフ学習(TGL)は、様々な現実世界のアプリケーションにまたがる一般的なテクニックとなっている。
本稿では,異なるTGLアルゴリズムの一般化能力について検討する。
一般化誤差が小さく、全体的な性能が向上し、モデルの複雑さが低下する単純化されたTGLネットワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T08:22:22Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Deep Graph Structure Learning for Robust Representations: A Survey [20.564611153151834]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの解析に広く利用されている。
GNNモデルの堅牢性を改善するため、グラフ構造学習の中心概念を中心に多くの研究が提案されている。
論文 参考訳(メタデータ) (2021-03-04T13:49:25Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
論文 参考訳(メタデータ) (2020-06-12T17:12:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。