論文の概要: Formalizing Statistical Causality via Modal Logic
- arxiv url: http://arxiv.org/abs/2210.16751v2
- Date: Tue, 1 Nov 2022 03:22:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 10:28:14.708209
- Title: Formalizing Statistical Causality via Modal Logic
- Title(参考訳): モーダル論理による統計的因果関係の定式化
- Authors: Yusuke Kawamoto, Tetsuya Sato, Kohei Suenaga
- Abstract要約: 確率変数に対する因果効果を特定するための統計的因果言語(StaCL)を定義する。
StaCLは、Kripkeモデルにおいて、異なる可能な世界の確率分布間の因果特性を表現するための介入のためのモダル作用素を組み込んでいる。
- 参考スコア(独自算出の注目度): 1.662966122370634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a formal language for describing and explaining statistical
causality. Concretely, we define Statistical Causality Language (StaCL) for
specifying causal effects on random variables. StaCL incorporates modal
operators for interventions to express causal properties between probability
distributions in different possible worlds in a Kripke model. We formalize
axioms for probability distributions, interventions, and causal predicates
using StaCL formulas. These axioms are expressive enough to derive the rules of
Pearl's do-calculus. Finally, we demonstrate by examples that StaCL can be used
to prove and explain the correctness of statistical causal inference.
- Abstract(参考訳): 統計的因果関係を記述・説明するための形式言語を提案する。
具体的には、確率変数に対する因果効果を特定するための統計的因果言語(StaCL)を定義する。
staclは、クリプケモデルにおいて、異なる可能な世界における確率分布間の因果特性を表現するために介入のためにモード演算子を組み込んでいる。
確率分布,介入,因果述語に対する公理を StaCL 式を用いて定式化する。
これらの公理はパールのdo-calculusの規則を導出するのに十分表現的である。
最後に,StaCLが統計的因果推論の正しさの証明と説明に利用できることを示す。
関連論文リスト
- The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Algorithmic syntactic causal identification [0.8901073744693314]
因果的ベイズネット(CBN)の因果的識別は因果的推論において重要なツールである。
d-分離やdo-calculusといった手法を用いた因果同定の定式化は、古典的確率論の数学的言語で表現されている。
古典的確率論を対称モノイド圏の代替公理的基礎に置き換えることで、この制限を解除できることを示す。
論文 参考訳(メタデータ) (2024-03-14T17:14:53Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Reinterpreting causal discovery as the task of predicting unobserved
joint statistics [15.088547731564782]
我々は因果発見が、観測されていない関節分布の性質を推測するのに役立つと論じている。
入力が変数のサブセットであり、ラベルがそのサブセットの統計的性質である学習シナリオを定義する。
論文 参考訳(メタデータ) (2023-05-11T15:30:54Z) - Causal Discovery via Conditional Independence Testing with Proxy Variables [35.3493980628004]
潜伏した共同設立者のような未観測変数の存在は、条件付き独立テストにバイアスをもたらす可能性がある。
本研究では,連続変数に対する因果関係の存在を効果的に検証できる仮説テスト手法を提案する。
論文 参考訳(メタデータ) (2023-05-09T09:08:39Z) - Axiomatization of Interventional Probability Distributions [4.02487511510606]
因果的介入は、do-calculusの規則の下で公理化される。
我々の公理化の下では、インターベンジド分布は定義されたインターベンジド因果グラフに対するマルコフ分布であることが示される。
また、自然構造因果モデルの大規模なクラスが、ここで提示される理論を満たすことを示す。
論文 参考訳(メタデータ) (2023-05-08T06:07:42Z) - Typing assumptions improve identification in causal discovery [123.06886784834471]
観測データからの因果発見は、正確な解を常に特定できない難しい課題である。
そこで本研究では,変数の性質に基づいた因果関係を制約する仮説を新たに提案する。
論文 参考訳(メタデータ) (2021-07-22T14:23:08Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z) - Enforcing Interpretability and its Statistical Impacts: Trade-offs
between Accuracy and Interpretability [30.501012698482423]
機械学習における解釈可能性の統計的コストに関する公式な研究は行われていない。
我々は、解釈可能な仮説の集合に対して経験的リスク最小化を行う行為として、解釈可能性を促進する行為をモデル化する。
我々は,解釈可能な分類器に対する制限が,過度な統計リスクの犠牲になる場合,正確性と解釈可能性の間のトレードオフを観察できるかどうかを事例分析により説明する。
論文 参考訳(メタデータ) (2020-10-26T17:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。