論文の概要: Agglomeration of Polygonal Grids using Graph Neural Networks with
applications to Multigrid solvers
- arxiv url: http://arxiv.org/abs/2210.17457v1
- Date: Mon, 31 Oct 2022 16:30:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 20:07:43.617266
- Title: Agglomeration of Polygonal Grids using Graph Neural Networks with
applications to Multigrid solvers
- Title(参考訳): グラフニューラルネットワークによる多角格子の集約とマルチグリッド解法への応用
- Authors: P. F. Antonietti, N. Farenga, E. Manuzzi, G. Martinelli, L. Saverio
- Abstract要約: 計算メッシュの接続グラフを分割するグラフニューラルネットワーク(GNN)を提案する。
GNNはメッシュのグラフ構造と幾何学的情報の両方を自然に同時に処理する利点がある。
機械学習(ML)戦略では、品質指標のパフォーマンスが向上し、GNNはオンラインでの計算コストの低減を特徴としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agglomeration-based strategies are important both within adaptive refinement
algorithms and to construct scalable multilevel algebraic solvers. In order to
automatically perform agglomeration of polygonal grids, we propose the use of
Graph Neural Networks (GNNs) to partition the connectivity graph of a
computational mesh. GNNs have the advantage to process naturally and
simultaneously both the graph structure of mesh and the geometrical
information, such as the areas of the elements or their barycentric
coordinates. This is not the case with other approaches such as METIS, a
standard algorithm for graph partitioning which is meant to process only the
graph information, or the k-means clustering algorithm, which can process only
the geometrical information. Performance in terms of quality metrics is
enhanced for Machine Learning (ML) strategies, with GNNs featuring a lower
computational cost online. Such models also show a good degree of
generalization when applied to more complex geometries, such as brain MRI
scans, and the capability of preserving the quality of the grid. The
effectiveness of these strategies is demonstrated also when applied to
MultiGrid (MG) solvers in a Polygonal Discontinuous Galerkin (PolyDG)
framework.
- Abstract(参考訳): アグルーメレーションに基づく戦略は適応的改良アルゴリズムとスケーラブルな多レベル代数解法の構築の両方において重要である。
本稿では,多角格子の凝集を自動的に行うために,グラフニューラルネットワーク(gnns)を用いて計算メッシュの接続グラフを分割する手法を提案する。
GNNは、メッシュのグラフ構造と、要素の領域やバリ中心座標などの幾何学的情報の両方を自然に同時に処理する利点がある。
グラフ情報のみを処理するためのグラフ分割の標準的なアルゴリズムであるmetisや、幾何学的情報のみを処理するk-meansクラスタリングアルゴリズムなど、他のアプローチではそうではない。
品質指標のパフォーマンスは機械学習(ML)戦略のために向上しており、GNNはオンラインでの計算コストを下げている。
このようなモデルはまた、脳mriスキャンのようなより複雑なジオメトリや、グリッドの品質を維持する能力に適用するときに、適切な一般化を示す。
これらの戦略の有効性は、多角形不連続ガレルキン(polydg)フレームワークにおけるマルチグリッド(mg)ソルバにも示される。
関連論文リスト
- Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant [1.8606770727950463]
我々は,マルコフ連鎖のグラフ分割問題に対処するGNNアーキテクチャをいくつか提案する。
このアプローチは、提案されたパーティショニングがケメニー定数をどの程度変更するかを最小化することを目的としている。
線形層を持つグラフSAGEベースのGNNが、この文脈でより大きく、より表現力に富んだアテンションベースモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-22T17:19:50Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
本稿では,グラフニューラルネットワークを用いてモジュラリティの目的を最適化し,グラフサイズと線形にスケールする新しい手法DGClusterを提案する。
私たちはDGClusterを、さまざまなサイズの実世界のデータセットで、複数の一般的なクラスタ品質メトリクスで広範囲にテストしています。
われわれの手法は最先端の手法よりも一貫して優れており、ほぼすべての設定で顕著な性能向上を示している。
論文 参考訳(メタデータ) (2023-12-20T01:43:55Z) - Connectivity Optimized Nested Graph Networks for Crystal Structures [1.1470070927586016]
グラフニューラルネットワーク(GNN)は、材料科学や化学における様々な応用に応用されている。
提案したモデルでは,MateBenchベンチマークのすべてのタスクにおいて,最新の結果が体系的に改善されることが示されている。
論文 参考訳(メタデータ) (2023-02-27T19:26:48Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2022-08-15T22:30:07Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。