論文の概要: Spatial-temporal recurrent reinforcement learning for autonomous ships
- arxiv url: http://arxiv.org/abs/2211.01004v2
- Date: Mon, 15 May 2023 12:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 00:24:41.909769
- Title: Spatial-temporal recurrent reinforcement learning for autonomous ships
- Title(参考訳): 自律船の時空間リカレント強化学習
- Authors: Martin Waltz and Ostap Okhrin
- Abstract要約: 本稿では,自律船の操縦に使用できる深層Q$-networksのための時空間リカレントニューラルネットワークアーキテクチャを提案する。
ネットワーク設計により、周囲のターゲット船の任意の数の処理が可能となり、部分的な観測可能性に堅牢性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a spatial-temporal recurrent neural network architecture
for deep $Q$-networks that can be used to steer an autonomous ship. The network
design makes it possible to handle an arbitrary number of surrounding target
ships while offering robustness to partial observability. Furthermore, a
state-of-the-art collision risk metric is proposed to enable an easier
assessment of different situations by the agent. The COLREG rules of maritime
traffic are explicitly considered in the design of the reward function. The
final policy is validated on a custom set of newly created single-ship
encounters called `Around the Clock' problems and the commonly used Imazu
(1987) problems, which include 18 multi-ship scenarios. Performance comparisons
with artificial potential field and velocity obstacle methods demonstrate the
potential of the proposed approach for maritime path planning. Furthermore, the
new architecture exhibits robustness when it is deployed in multi-agent
scenarios and it is compatible with other deep reinforcement learning
algorithms, including actor-critic frameworks.
- Abstract(参考訳): 本稿では,自律船の操縦に使用できる深層Q$-networksのための時空間リカレントニューラルネットワークアーキテクチャを提案する。
ネットワーク設計により、任意の数の標的船を処理でき、部分的観測性に堅牢性を提供することができる。
さらに, エージェントによる異なる状況の簡易評価を可能にするため, 最先端の衝突リスク指標を提案する。
海上交通のCOLREG規則は、報酬関数の設計において明確に考慮されている。
最終的な方針は、'around the clock'問題と呼ばれる、新たに作られた18のマルチシップシナリオを含む、一般的な今津問題(1987年)のカスタムセットで検証される。
人工電位場と速度障害物法による性能比較は,海洋経路計画における提案手法の可能性を示している。
さらに、新しいアーキテクチャはマルチエージェントシナリオにデプロイされた場合の堅牢性を示し、アクタークリティカルなフレームワークを含む他の深層強化学習アルゴリズムと互換性がある。
関連論文リスト
- Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
本稿では,海上監視のための深部再帰モデルに基づく手法を,公開可能な自動識別システム(AIS)データ上で提案する。
このセットアップはディープ・リカレント・ニューラルネットワーク(RNN)ベースのモデルを使用して、観測された船の動きパターンを符号化し、再構築する。
提案手法は,観測された動作パターンと再構成された動作パターンの計算誤差に対するしきい値決定機構に基づく。
論文 参考訳(メタデータ) (2024-06-14T12:15:15Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Typhoon Intensity Prediction with Vision Transformer [51.84456610977905]
台風強度を正確に予測するために「台風強度変換器(Tint)」を導入する。
Tintは、層ごとにグローバルな受容野を持つ自己認識機構を使用する。
公開されている台風ベンチマークの実験は、Tintの有効性を検証する。
論文 参考訳(メタデータ) (2023-11-28T03:11:33Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - ProphNet: Efficient Agent-Centric Motion Forecasting with
Anchor-Informed Proposals [6.927103549481412]
モーション予測は自動運転システムにおいて重要なモジュールである。
マルチソース入力の不均一性、エージェント動作のマルチモーダリティ、オンボードデプロイメントに必要な低レイテンシのため、このタスクは極めて難しい。
本稿では,効率的なマルチモーダル動作予測のためのアンカー情報を用いたエージェント中心モデルを提案する。
論文 参考訳(メタデータ) (2023-03-21T17:58:28Z) - Long-HOT: A Modular Hierarchical Approach for Long-Horizon Object
Transport [83.06265788137443]
我々は、時間的拡張ナビゲーションのための新しいオブジェクトトランスポートタスクと新しいモジュラーフレームワークを提案することで、長距離探査と航法を具現化する上で重要な課題に対処する。
私たちの最初の貢献は、深層探査と長期計画に焦点を当てた新しいLong-HOT環境の設計である。
重み付けされたフロンティアの助けを借りて探索を行うために,シーンのトポロジカルグラフを構築するモジュラー階層輸送ポリシー(HTP)を提案する。
論文 参考訳(メタデータ) (2022-10-28T05:30:49Z) - Multi-lane Cruising Using Hierarchical Planning and Reinforcement
Learning [3.7438459768783794]
マルチレーンの巡航には、車線変更と車線内操作を用い、良好な速度を達成し、安全を維持する必要がある。
本稿では,階層型強化学習フレームワークと新しい状態-作用空間抽象化を組み合わせることで,自律型マルチレーンクルーズの設計を提案する。
論文 参考訳(メタデータ) (2021-10-01T21:03:39Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Online Mapping and Motion Planning under Uncertainty for Safe Navigation
in Unknown Environments [3.2296078260106174]
本論文は,確率論的安全保証者によるオンラインで実現可能な動作のマッピングと計画のための不確実性に基づくフレームワークを提案する。
提案手法は, 環境の不確実性を意識した環境表現を構築するために周囲をマッピングし, (i) 信念空間の多層サンプリングベースプランナーを通して, キノダイナミックに実現可能で確率論的に安全な目標に反復的に(re)計画を行うことにより, 動き, 確率論的安全性, オンライン計算制約を取り扱う。
論文 参考訳(メタデータ) (2020-04-26T08:53:37Z) - A Novel CNN-based Method for Accurate Ship Detection in HR Optical
Remote Sensing Images via Rotated Bounding Box [10.689750889854269]
船舶検出における現在のCNN法に共通する欠点を克服し, 新たなCNNに基づく船舶検出手法を提案する。
配向と他の変数を独立に予測できるが、より効果的に、新しい二分岐回帰ネットワークで予測できる。
船体検出において提案手法が優れていることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2020-04-15T14:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。